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Abstract

The concepts of continuum damage mechanics (CDM) are discussed and a constitutive framework of
CDM is proposed for infinitesimal deformation based on the internal variables approach. The framework
involves transforming the actual damaged continuum into an equivalent fictitious undamaged continuum.
A distinction is made between the state of damage and the damage measure. The development makes use of
the concept of ‘damage force’. The negative of the damage force is related to the energy required to restore
the fictitious undamaged continuum to its undamaged state after each step of deformation and damage.

A set of equation and constraint governs the deformation of the fictitious continuum, while another set
of equation and constraint governs the damage behavior. The coupling between the deformation and damage
processes is provided for by the damage restoring force concept.

Within the proposed constitutive framework, the endochronic concept has been used to derive explicit
constitutive equations. The proposed model has been shown to describe the three-dimensional state of
deformation of a cylindrical concrete specimen subjected to uniaxial compression. © 1999 Elsevier Science
Ltd. All rights reserved.

1. Introduction

A typical work in continuum damage mechanics (CDM) often involves the damage effect
variables in the sense of Kachanov (1958) and the effective stress/effective strain concepts. Conse-
quently, the damage mechanics theories are often derived from the usual constitutive theories by
use of effective variables, which take into account the effects of damage, in place of original
variables. The thermodynamics framework of CDM often involves either the concept of the strain
equivalence postulate (Lemaitre and Chaboche, 1978), the strain-energy equivalence postulate
(Sidoroff, 1981; Lemaitre and Chaboche, 1985), or the hypothesis of stress working equivalence
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(Chow and Lu, 1992) along with the concepts of continuum mechanics and irreversible changes
in the material internal structure. The microdefects are represented at the macroscopic level by a
damage variable. A typical elastoplastic damage theory is based on the generalized damage theory
initially proposed by Chaboche (1977) and later by Lemaitre (1985). In the 1985 paper, Lemaitre
proposed that the damage energy release rate, i.e., energy release by the system during the damaging
process, is related to the elastic strain energy. The damage energy release rate is defined by the
thermodynamic force conjugate to damage evolution. This treatment amounts to an uncoupled
consideration between plasticity and damage processes.

These concepts of CDM have been proposed by different authors associated with different
definitions and theories, and not all of them are needed in one theory. Some of the aforementioned
concepts and definitions are not even compatible to each other. One of the purposes of this paper
is to discuss the existing concepts of CDM and to propose a CDM constitutive framework using
a set of concepts in a unified manner. Further constitutive modeling is required to arrive at explicit
constitutive equations for CDM, which may be achieved by use of concept such as damage
potential within the proposed constitutive framework. Another approach is to formulate the
constitutive equations based on an endochronic concept and still using the same constitutive
framework. The second purpose of this paper is to develop such an endochronic formulation for
CDM. An example will also be given to illustrate the application of the theory.

In Section 2, the continuity tensor and the anisotropic damage tensor are defined. The concepts
of continuity tensor and damage tensor are well-known, but the derivation presented is easy to
follow and is different from the existing one. The concepts of gross stress, net-stress, effective stress
and damage effect tensor are discussed in Section 3. The thermodynamics constitutive framework
for CDM is discussed by use of internal state variables and presented in Section 4. According to
this approach, the damage tensor is a measurable quantity which works together with the concept
of damage internal variables. The damage internal variables define the state of damage. Concepts
such as the ‘damage force’ and the ‘restoring force’ are discussed. In Section 5, the plastic
deformation and damage processes are discussed and in Section 6, the constitutive equations and
constraints for plastic deformation and damage are presented. The two processes are related by
the ‘restoring force’. In this discussion, co-rotational rates are used to account for rotation in the
principal axes of damage. Author’s endochronic CDM is briefly summarized in Section 7 and in
Section 8, an application related to a cylindrical concrete specimen subjected to axial compressive
stress is presented.

2. The anisotropic damage tensor

This work uses a second order tensor as a parameter of damage. The tensor defines the loss of
net area of material as in the original work of Kachanov (1958). The presentation of damage
tensor D;; in this section follows previous works of Murakami and Ohno (1981) and Betten (1983),
in which the damage tensor is constructed using area vectors related to Cauchy’s tetrahedron in a
damaged state. In Murakami and Ohno’s anisotropic damage theory of creep, the second rank
symmetric damage tensor D;; is derived by representing the effects of microscopic grain-boundary
cavities in terms of dyadic product of the unit normal vector to the relevant boundary. On the
other hand, in a macroscopic approach, Betten derived the damage tensor from a third order,
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Fig. 1. Definition of the damage measure—the load bearing area.

skew-symmetric, continuity tensor which represents the area vector. In the present work, the
derivation of D;; is similar to Betten’s derivation, but a second-order continuity tensor is used,
which provides a simple and more meaningful physical interpretation.

Consider a differential tetrahedron of an undamaged material as shown in Fig. 1(a). Note that
the figure shows a special case where x;-axes coincide with the principal damage axes. In general,
if dS denotes the i-component of a gross area element which has the normal n{”, then dS¥’ can
be characterized by

dsV = —%e,»,«k dx$? dx?

ds®

1 3 1
—3 ey dx;? do)

3 1 1 2
dS? = —Jey dxi? dx?
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ds® = —%e,-jk(dxj(-” —dx)(dx? —dxY) (1)

where e, is the permutation tensor and the vectors dx!” do not coincide with the principal damage
axes in the general case. The sum of these vectors is zero due to closure of the surface area of
tetrahedron, i.e.,

dSH +dSP +dSP +dS® = 0, ©)

Consider now a tetrahedron of a material with internal damage as shown in Fig. 1(b). The nominal
dimensions of this tetrahedron are the same as those for Fig. 1(a), but the areas are reduced by
scalar factors o, f, 7, and x from the previous tetrahedron with their corresponding normals
unchanged. Then, the area vectors are

dS1V = —lo, dx? dxf? = adS®
dSP® = —1 B dx® dx{V = pdSP
dsS® = —%y,,k dx{" dxf? = ydS®
dS1 = —Jr(dx —dx®) (dxf —dxf?) = kd S 3)

where o = oeu, Bix = Peii Vi = yeur and k. = ke The areas in eqn (3) represent net cross-
sectional areas of the element. These are the areas that are effectively resisting loads and are
perpendicular to the coordinate axes x;, X,, and x;, respectively. Note that dS™ denotes the inclined
side. The parameters «, 5 and y will be further discussed later in this section. It is noted that the
vectors dS1", ..., dS, defined in eqn (3), and the corresponding dS(", ..., dS®, defined in eqn
(2), differ in length, and the condition of closure cannot be satisfied, i.e.

dS" +dSP +dSP +dS® # 0, )

except for the case of isotropic damage where o = f =y = k.

Because of the existence of microcavities in the material, the load-carrying net areas of the
damaged continuum, Fig. 1(b), are reduced. It is now postulated that there exists a fictitious
undamaged continuum, as shown in Fig. 1(c), which is mechanically equivalent to the damaged
continuum. Thus, the damage state is represented by the fictitious undamaged continuum such
that

dS{) = —jey dx dz? = dS}V
dg,(z) = _%eijk d)%f) dxi” = dsp
aSP = e, A s = aSP
AS1) = ey ld) —d) (s —dif?) ©

where dx\) define the fictitious differential tetrahedron. Furthermore, the closure of the fictitious
undamaged continuum is assumed to be satisfied, Thus,

4SO +dS +dSP +dS® = o, ©)
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The three area vectors dSV in (5) are identical to the vectors dS\ in (3) and are related to the
vectors dSY in (2) by scalar factors «, f5, and 7y, respectively. The fourth vectors dS® and dS™
are different in both magnitude and direction. Since (5) is used in the remaining part of this paper,
the parameter x is not important and will not be further discussed. It is reasonable to assume that
dS™ and dS™ are related by a linear relation

dS® =y, dS® (7

where J;; is a second-order tensor. In eqn (7), dS@ represents the effective load-carrying area of
the damaged material and dS{* is the gross area on the inclined face of the material element.
Therefore, tensor y; represents the fraction of dS{* that can be used to carry load, accounting for
the effect of damage. Tensor ;; is referred to as the ‘continuity tensor’, since it describes the
continuity state of the material.

The continuity tensor y;; can be determined directly from eqn (7). Substituting (1) and (2) into
the right-hand-side of eqn (7) and eqns (3), (5) and (6) into the left-hand-side of eqn (7), one has

2 3 3 1 1 2
o A d® + By dx$® dx” + 7y dxt? dxg?
= Yy (dx? dxf? +dx® dx) +dxi” dx?)  (8)

If the vectors dx}” are aligned with the coordinate axes x;, respectively, then dx’ = 4,|ds'| (no
sum on j), where |ds’| defines the magnitude of the vector dx!’. Then, for i = 1, eqn (8) becomes

(Y11 —o)e 25]ds?] |ds* |+ 1205, |ds™| [ds' |+ 11555, [ds' | [ds?| = 0 )

Since |ds’|, the magnitudes of dx!”, are independent of each other, they can be independently
varied. But, due to the closure assumption, eqn (9) cannot be violated. Therefore, eqn (9) can be
satisfied for all values of |ds/|, if and only if

Y=o, Y2=0, Y5=0 (10)
Similar discussion may be made for i = 2 and 3. Thus, the continuity tensor is obtained to be

a 0 0

l//z:f=0 B 0 (11)
0 0 vy

It is seen that when the x-axes are principal damage axes, the continuity tensor ¥, is in a diagonal
form.

In the case of uniaxial tension along the x,-direction, let s be the total gross cross-sectional area
and § be the effective area of resistance so that § < s. In view of eqn (7), vectors dS¥ and dS®
are represented by [§,0,0]” and [s,0,0]”, respectively, with n* = [1,0,0]”. Then, by use of eqn
(11), eqn (7) reduces to

§S=1ys (12)

where = y,, = a. Therefore, = §/s represents that fraction of the cross-sectional area which
can be used to resist load. When y = 1, the material is in the virgin state without damage and § is
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identical to s. When = 0, the material can no longer resist load, since its effective area of
resistance is reduced to zero.

The damage tensor is defined as a complementary (dual) tensor of continuity (Rabotnov, 1969).
In other words, the damage tensor represents the fraction of the cross-sectional area that got
reduced by microdefects. In the uniaxial loading case, the damage variable can be expressed in
terms of the continuity variable i as

>

N
D=""=1-y (13)

Thus, D = 0 corresponds to the undamaged state and D = 1 corresponds to the breaking state of
the material. In the multiaxial case, a second-order damage tensor D,; is defined as

Dy =0d;—, (14)

In the special case, when the x; axes are also the principle axes of damage, tensor i;; is given by
(11), and the damage tensor is given by
D, 0 O l—a 0 0
D,={0 D, 0= 0 1-8 0 (15)
0 0 Ds 0 0 1—y
It is seen that the principal values D,, D,, and D; are related to the principal-continuity variables
o, B and y, respectively. These principal values D, can be measured on the test specimens cut along

mutually perpendicular directions x,, x,, and x;, respectively. Alternatively, the continuity tensor
is given in terms of the principal values of damage tensor as

a 0 0 1-D, 0 0
;=10 B 0|=| 0 1-D, 0 (16)
00 v 0 0 1-D,

where« = 1—D,, f=1—D,,and y = 1—D;.

3. Gross stress, net-stress and effective stress

In the previous section, a definition of damage is derived by introducing a fictitious undamaged
continuum which is mechanically equivalent to the actual damaged continuum. In this section,
various definitions of stress, such as the gross stress, the net-stress, and the effective stress, are
discussed. The gross stress or the Cauchy stress, g;;, is the stress defined on the actual damaged
continuum while the net-stress, ;;, and the effective stress, G;;, are the non-symmetric and symmetric
stress, respectively, defined on the fictitious undamaged continuum.

By considering the actual damaged continuum and the fictitious undamaged continuum under
the same applied force, the corresponding stresses on the two continua are different, since the

stresses are calculated over different cross sectional areas of the continua. If the equilibrium of the
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(a) Cauchy's stress tensor (b) Net-stress tensor

(c) Effective stress tensor -

Fig. 2. Definition of stress tensors and the pseudo-force.

actual damaged continuum is considered, Fig. 2(a), one can derive the relation between the stress
vector p; and the stress tensor o, 1.€.,

Pi = 0l a7

where n; is the unit normal of an area element dS. Similarly, the equilibrium of the fictitious
undamaged continuum, with an area element dS and unit normal 7,, Fig. 2(b), yields

ﬁi = éjiﬁj (18)

where 6, is the net-stress acted on the fictitious undamaged continuum and p; is the corresponding
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stress vector. Since the area elements dS and dS are subjected to the same force, i.e., dP, = dP,
one can conclude that

where dS and dS are scalar quantities and the corresponding vector expression is obtained from
eqn (7) as 7;,dS = y,;n;dS. Thus, eqn (19) becomes

(0= Grhi)n; dS =0 (20)
and it follows that
By use of eqn (11), the net-stress 6, is found to be

011 012 033

04 o

01 0o 023

0y = B B B (22)

031 032 033

which shows that the net-stress 6,; is non-symmetric, except for the case of isotropic damage. It is
not convenient to use the non-symmetric stress tensor 6;, together with a symmetric strain tensor
and/or strain rate in the constitutive equations. Therefore, new symmetrical stress measures, the
effective stress &;;, have been defined on the fictitious undamaged continuum and used in the
constitutive equations. Various definitions have been proposed to symmetrize 6,;. These definitions
may be summarized based on various transformations operated on the net stress 6,;. They are:

(a) Betten (1983) proposed a ‘transformed net-stress tensor’, which is an effective stress subjected

to the following transformation
5ij = %(élijlp;j] +lﬁ;§ 1 6'jk) (23)

Using eqn (21), the expression becomes

Gy = %(M'%' Vi Vi Now = Moy (24)
where
Mifk1=%(‘ﬁil¢zfl+%7cl i) (25)

The fourth-order transformation tensor M, is referred to as the ‘damage effect tensor’. For v,
having the diagonalized form of eqn (11), eqn (24) can be expressed in the matrix form as
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(6, ) [1ja® 0 0 0 0 07 (a,,)
G /B> 0 0 0 0 G1s

J G33 L _ 1/ 0 0 0 JICEENE (26)
Gia 1jaff 0 0 012
023 sym 1/py 0 023

or

011/0C2 o/af oys/ay
G, =|on/oaf 0:/F* 023/Py 27)
o31/oy 03,/ U33/V2

which is a symmetric stress tensor.
(b) The effective stress proposed by Cordebois and Sidoroff (1979), also by Chow and Wang
(1987), is defined through its components given by

G, =+/0,0; (nosumonior,j) (28)
Since the right-hand-side of (28) is not a tensor operation, the effective stress ,; as defined by eqn
(28) is not a tensor. However, in the matrix form, the above definition of effective stress can also
give rise to a linear relationship between &, and o;;.

(c) In the study of anisotropic damage in the ductile solids Stumvoll and Swoboda (1993) defined
the effective stress as the symmetric part of the net-stress tensor, i.e.,

Gy = %(6ij+6ji) = %(lpi;lé_i/+5ik¢_j7 Do (29)
where the damage effect tensor is
My =30 S+, ") (30)

By use of eqn (16), M, may be written in terms of the principal damage D,, D, and D; and it can
be reduced to a form used by Rabotnov (1968) and later by Chow and Lu (1989).
In all cases, the effective stress ;; is related to the Cauchy stress ¢;; by the equation

G = sz/klo'k/ (31)

where the exact expression for the damage effect tensor M;, depends on the method used in
symmetrizing 6;;. With respect to the principal damage coordinate system, the damage effect tensor
M, is represented by a 6 x 6 diagonal matrix. In a special case, if the directions of principal

stresses coincide with those of the principal damage, then these equations further reduce to

611 M, 0 0 011
G = 0 M55, 0 022 (32)
G33 0 0 M 33511033

where M, M., and M;s3; are functions of principal damage variables D,, D,, and D;.
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The interpretation of the effective stress is now investigated. The net-stress tensor 6, is an actual
non-symmetric stress acting on the fictitious, undamaged continuum, which is subjected to the
same applied force as the original, actual, damaged continuum, i.e., dP; = dP,. On the other hand,
the effective stress tensor &;; is the fictitious symmetric stress acting on the fictitious undamaged
continuum due to the application of the pseudo-force d P, as shown in Fig. 2(c). To validate this
statement, the Cauchy formula, relating the pseudo-force dP; to the effective stress & is

where 7, and dS were previously defined on the fictitious undamaged element. Using eqns (7) and
(31), the above relation can be rewritten in terms of the Cauchy stress and the area element n,d.S
as

dP~f = M/ik/al(/ﬁf ds = M/fkﬂ/c/l//jmnm ds (34)
If Betten’s definition of damage effect tensor, eqn (25), is used, eqn (34), becomes
dP, = ;' dP, (35)

Equation (35) established that the pseudo-force dP; is related to the original applied force dP; by
the inverse-transpose of the continuity tensor ;. If, on the other hand, the damage effect tensor
is defined by eqn (30), then the pseudo-force on the fictitious undamaged element is

dP, = (dP;+ 6,7, dS) = J(dP;+ Yy 0, dS) (36)

It is noted that dP, = &_,—,—fz_,—d§ # &i,ﬁ,-df, due to the non-symmetric property of 6;,. The last term of
(36) can be viewed as an additional abstract-force due to the actual stress g;; acting over the area
of the fictitious undamaged continuum, i.e., ﬁ,df. Therefore, the pseudo-force corresponding to
this definition of effective stress has no simple physical interpretation.

4. An internal state variables theory

Based upon concepts of continuum mechanics and irreversible thermodynamics with internal
variables, the Clausius—Duhem inequality with respect to the actual, damaged continuum is given
by (see Valanis, 1971)

. .1
73— ¥ (&> ijs Dijs iy 0) =00 — 5 1,0, > 0 (37)

0 J
In (37), the Helmholtz free energy W is a function of total (elastoplastic) strain ¢;;, damage measure
D;;, temperature 0, and two sets of internal state variables ¢;; and 7};. There are n number of internal
variables ¢; (r =1,2,...,n) which describe the state of plastic deformation and m number of
internal variables y}; (s = 1,2, ..., m) which specify the state of damage in the continuum. /; is heat
flux vector and # is entropy density.

In a typical damage mechanics model, the damage tensor D,; is treated as an internal state
variable (it is macroscopically not measurable by definition) that describes the irreversible process
of internal structure due to microdefects. However, in the present work, the damage tensor D;; is
not an internal state variable and it represents a measurable quantity, i.e., the fraction of reduction
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in load-resisting area. It is a measurable quantity in the description of damage, even though it may
be difficult to measure. The role played by D;; in the description of damage is similar to the role
played by strain, which is also measurable, in the description of plastic deformation.

In this work, a set of internal state variables y;; is introduced to describe the state of internal
damage as a result of growth and/or nucleation of microcracks and/or microvoids. The set of m
internal variables 7}, which evolves with loading histories, is introduced to distinguish one internal
state of damage from the other, similar to the set of internal variables ¢;; which describes the state
of plastic deformation that cannot be uniquely described by the plastic strain alone. The damage
variable D;; describes the current fraction of area reduction but not the state of damage. To
elaborate, two continua of the same initial damaged state, when undergoing different loading
histories, may end up having the same load-resisting area momentarily, hence the same value of
D;;, but having two different states of damage.

The concept of using both damage tensor D;; and damage internal state variables y;; in this work
is similar but not equal to the concept of Krajcinovic (1985) proposed for the brittle CDM model.
In Krajcinovic’s model, the microcracks vector fields w'?, treated as internal variables, are used to
describe the state of damage, and a scalar damage measure D is used to describe the overall damage
of the material. However, D is the macroscopic counterpart of the microscopic w (they are related
by an integral) and D is, therefore, not measurable. In the present work, D;; is defined by a
definition not directly related to y;; and it is influenced by the current loading condition. Thus, at
the same state of damage, a different incremental loading state will give rise to a different increment
of D;. Hence, dD;; is different, when the material element is subjected to incremental tension,
compression or shear. As an illustration, consider uniaxial tension of a cylinder. The majority of
the microcracks will develop in the plane perpendicular to the maximum tensile strain. If the
specimen is then unloaded and subsequently subjected to a small compressive stress along its axial
direction, the specimen will behave as though it were undamaged up to a certain compressive stress
threshold, since all of the microcracks will be passive (crack closure). Consequently, the initial
increment of D,; depends on whether the stress increment is tensile or compressive, even though
the state of damage is the same at that moment. Furthermore, with the second-order tensor
representations of D;; and y;;, the proposed theory is capable of describing both spherical (e.g.,
void volume fraction) and planar (e.g., a system of planar microcracks) effects, and their inter-
actions, of microcracks.

In the fictitious undamaged configuration, the volume and surface area of the continuum are
reduced by excluding the volume and area of the continuum that were previously occupied by
microdefects. These are denoted by ¥ and S, respectively. Consequently, the fictitious undamaged
matrix material becomes homogeneous and isotropic. For a given force field P, = P, the first law
of thermodynamics written for this fictitious undamaged continuum, is

d (/1 . o ) X .
dlf <2ﬁiﬁ[+ﬁ>ﬁdV:J p”bizﬁidV—FJ(a”ﬂﬁf—h_,-)ﬁ_,dS—i—J Fdv (38)
. ) . )

vV N V

where (") is used to indicate that the quantity is associated with the fictitious undamaged
continuum. In (38), &, is the velocity; 7 is the internal energy density; g is the mass density; b, is the
body force; and 7 is the heat source term. The first term in the surface integral represents the rate
of work done by surface traction and is expressed in terms of the non-symmetric net-stress
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tensor 6, When the pseudo-force field P; is introduced to the fictitious continuum so that the
corresponding effective stress &;; is symmetric, eqn (38) is written as

d 1 . . . . A .
dr J,\2 r s T P

Due to the use of pseudo-force field P, the velocity vector in the configuration is &, instead of &,
as indicated in eqn (39). Consequently, the deformation of the fictitious undamaged continuum
subjected to pseudo-force field P, is different from that subjected to force field P, The rate of
deformation for the fictitious undamaged configuration is then defined by

Lo +% (40)
“ =2\, " ox,

where Z;; defines the deformation of the fictitious undamaged continuum (with pseudo-force field
P) and is referred to as the effective strain. According to eqn (40), the relationship between the
effective strain g; and the actual strain ¢; depends on transformations between velocity vectors
from v, to ¢, and from &, to &, In general, the explicit forms of these transformations are difficult
to define due to the complexity of the geometry and mathematics involved. In this work, the
effective strain g;,is expressed in terms of damage tensor D;; and actual strain ¢;;, and this relationship
will be discussed later in this section.

The postulate of free energy equivalence is applied in the subsequent discussion. According to
this postulate, which was initially proposed by Cordebois and Sidoroff (1979) in the form of strain-
energy equivalence, the free energy for an actual, damaged material has the same form as that for
a fictitious, undamaged material, but the variables are replaced by the effective quantities. Thus,

li‘j(gija qua y?ja 9) = lP(‘gija q;j’ Dzjja yfja 9) (41)

~F r

where §;;’s are the effective ¢;;’s. Note that D,; does not explicitly appear as one of the state variables
on the left-hand-side of (41). In view of eqn (41), the free energy available to do mechanical work
and stored in the fictitious continuum is the same as that stored in the actual continuum, resulting
in an equivalent mechanical behavior.

The second law of thermodynamics and the equation of motion at the fictitious configuration
subjected to the pseudo-force field P, become

d ., P (h . .

— 5 > _ _ | =25,

dZLpndV/ LQdV LG”"dS (42)
06  ~ o

o, +pb; = pf; (43)

where f; = (d5,/d?). Using eqns (39)—(43), the Clausius—Duhem inequality for the fictitious undam-
aged continuum in the isothermal conditions is given by

5@/&,‘—‘;’(551, T Vf/) =0 (44)
so that
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<~ a@).~ o, oY 0 45)
0= ax o= A 4= Vi 2
08; oqy; Yy

In the fictitious continuum, &, §;;, and y;; are the state variables so that they can be independently
varied. Although, §;; may vary when &; changes, their relation is not one-to-one. Different &;
histories may lead to the same §;;, and a material with different §;; may correspond to the same &;
momentarily. Thus, it is possible to vary &, so that §j; is left unchanged. Therefore, inequality (45)
is always satisfied, if

5. = 0¥ 46

0 = oz, (46a)
N SN

— 4= =0 (46b)

i

According to (46a), the effective stress &, is derivable from the fictitious undamaged free-energy

P. The inequality (46b) gives the thermodynamic constraints on the laws governing the evolution
of the two sets of internal variables, §;; and y;;.

It is now possible to derive the explicit relationship for effective strain &;. A relation similar to
eqn (46a) exists for the actual damaged continuum. When the postulate of free energy equivalence
1s assumed, this relation is

v 0P 0o, 0P og,
o Oe; Oy 08y Oey  0gy Ocy

(47)

where the effective internal variable gj; is assumed to be a function of the actual internal variable
¢;; and damage tensor D,;. Note that, for the actual damaged continuum, independent variables
are ¢, ¢;; and D, so that the second term on the right-hand-side of (47) drops out and the equation
reduces to

Vor, . oa

= =G 4
7= o8 08, M oe, “8)
Using (31), (48) further reduces to
08,
EN = N (49)

i
where N, is the inverse of M,;, and is a function of D,; only, or
Mijlniszlij = Lkl (50)

In (50), the fourth-order identity tensor is /;;, = 6,0, and ¢,;is Kronecker’s delta. Thus, it follows
from (49) that the effective strain £ is linearly related to ¢; by

& = Nyt O & = M8 (51a)
Then, it is assumed that the following relations are valid for the internal variable ¢j;

q:/ = Nklzj/Q?cl or q;:/ = Mklijq;d (51b)
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Constitutive equations at the fictitious undamaged configuration must satisfy the inequality
given by eqn (44). By use of (51a) this inequality can be written as

. = o0&y .
ijgij_\P(Sija qij ij) ‘HTME'[_DU =0 (52)
iy

where

agi/ oN, Klij
— = ~ &y
aDmn aDmn

(53)

By observing (41), the first two terms of (52) are the same as the left-hand-side of (37) in the
isothermal case. During an incremental loading, the fictitious undamaged continuum undergoes a
deformation in the matrix as well as an increase in damage. The first two terms of (52) are energy
dissipated associated with this process. However, by definition, the state of the fictitious material
remains undamaged at the end of each loading increment. The amount of energy dissipated in
order to restore the fictitious continuum to the undamaged sate is represented by the last term of
inequality (52). For convenience, inequality (52) can be rewritten as

6ty — V(& G 7) —GyD = 0 (54)
where
. 08y
G, = _O-klﬁ (55)

ij

Tensor G, is the thermodynamic force associated with unit damage growth D;;, and, in this work
it is referred to as the ‘damage force’ for simplicity. This quantity may also be considered as the
energy release rate per unit damage advance. Physically, the negative of the damage force, — G,
can be interpreted as the ‘restoring force’ which restores the fictitious continuum to its undamaged
state after experiencing a unit damage growth D,,. It is seen from (55) that G;; can be expressed in

terms of &, &, and D,;. A further discussion of the damage force can be found in the Appendix.

5. Plasticity and damage

A discussion is now given to characterize the plastic deformation process, the damage process,
and the coupling between the two processes. Starting with the actual damaged configuration,
where the state variables are ¢;;, D,;, g, and y;;, the Clausius-Duhem inequality (37) can be rewritten
for isothermal process as

oY v oY . oY
i D;——7;,=20 (56)

o & T q4i— =~ D
Og;; 842/61] oD, " oy,

565

Replacing ¥ by ¥ and noting that D;; and y;; are independent variables, eqn (56) becomes
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i 88 68A cl a 6quq

G — ;=0 (57)

ij

0P oz, oV og, (0¥ os, | 0P og; oy
i 08; 0Dy 567?,« oD,) " 0yy;

or, after regrouping of terms, it may be shown that

oty — V(& G ) = 0 (58)

Constraint (58) represents the Clausius—Duhem inequality of the actual damaged configuration.
However, unlike (37), inequality (58) involves the fictitious free energy ‘T’(@/, di;»7;) which is
defined in the fictitious undamaged configuration, where the fictitious material is isotropic. There-
fore, ¥(&, » Ji;» V) iInvolves only material constants that are isotropic tensors.

In an attempt to characterize the plastic deformation and the damage process, one recognizes
that the process does not directly influence the mechanisms of plastic deformation; that is, there is
no direct coupling between damage and plastic deformation. In general, plasticity is directly related
to slips for metals and to other mechanisms for other materials. In all cases, damage influences
plastic strains only because the net area of resistance decreases as the damage proceeds. In the
present work, damage does not directly influence plastic deformation of the fictitious undamaged
continuum, but it does influence the plastic deformation of the actual continuum.

Based on this observation, the fictitious free energy ‘P(s,,, di;»73) 1s assumed to consist of two
parts, the fictitious plastic potential ¥, (&, ;»i;) and the damage potential ¥, (D, s i)y 1.6,

ql(gzjfa Jijs Vfi) = li'11 (51/7 67?,) + @2 (Difa V;;) (59)

where potential ¥, (5, q;;) characterizes the plastic process of the fictitious undamaged continuum
while potential ¥, (D, 7;;) describes the damage process.

During deformation, the microcracks and/or microvoids will extend, grow and nucleate, resulting
in progressive material deterioration. This damage deterioration is not arbitrary and it must obey
thermodynamic constraints to be established. The damage potential ¥, (D, vy;) 1s used to provide
the equation of damage evolution and its necessary constraints.

The state of microdefects is represented by the set of internal variables y;;. The change in
microdefects together with the loading conditions bring about a decrease in load-resisting area,
which is represented at the macroscopic level by damage tensor D;;. The effect is carried over to
the deformation process, elastic or plastic, through the effective variables, &;, ¢ and §;;. Hence, an
indirect coupling occurs between the plasticity and damage in the actual damaged continuum.
Using (59), inequality (58) is written as

0ty — 1 (&5, @) —Pa(Dy, 7)) = 0 (60)

6. The constitutive equations and constraints

Within an infinitesimal strain theory, the stress rate is usually represented by the material rate.
In CDM, it is important, however, to consider the rotation of the principal directions of damage
during the deformation process. The principal directions of damage do not generally coincide with
the principal stress, when nonproportional loading takes place or when the material has suffered
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a prior damage. To satisfy the requirements of reference frame indifference, the rate of change of
damage measure D,; and the internal variables y;; are expressed by the corotational derivatives

ﬁz/ = D;j— 0y D+ Dy (61a)
Vs . K K
Vi = Vi~ Oa Yy T VO (61b)

where V denotes the corotational differentiation and w;; represents the spin of the principal damage
coordinate frame with respect to the fixed reference coordinate frame. Thus, it follows from (60)
that

< alpl agkl) . aq’l aqfd o <aqjl agk! aqjl 6(721 aq’z)B 5‘?2 Vs
' 2 i A

0;i— —— & — L — ~y5 =0 62
" 0t 06y) " oq oq, " \ 084 0D, oq, 0D, D, oy " (©2

S~ince & Dijy g and y}; are independent state variables, fixing these values also fix the values of ¢,
Y, and ¥, because they are state functions. For inequality (62) not to be violated for any arbitrary
choice of ¢; while keeping D;;, ¢i;, and y;; unchanged, the following conditions must hold

- al’Pl agkl
v 08y Oe;
v, g, oV, 0g, 0¥, o, oP P
_ .1 CI/fl (% 1 08 '1 i 2 IV),-,-— 2 ;f_l_ >0 (63b)
0y Oqy; " \ 08w 0Dy~ og;, 0Dy~ 0Dy) " ’

G (63a)

Using (49) and noting that N, is the inverse of M, (63a) reduces to

o

Thus, the effective stress is derivable from potential ¥, (&, ;). Also, (63b) can be rearranged to
yield

o, v 0P, 0P, v
e G- D, — £ >0 65
M i < ’ 8D,,-> ’ 87’}\:}'% ()
where
o, oz, 08,
G.= — = — 6, 66
i o5, 0D, *oD, (©0)

In the derivation, eqns (64) and (55) were used. Note that the first term of (63b) and the second
term in the bracket of the same inequality are combined to form the first term of (65).

From the assumption that damage does not directly influence the state of plasticity of the
fictitious continuum, i.e., damage affects the deformation only through D,; the constraint (65) can
be replaced by the following stronger conditions

M, v
———q4;=0 (672)
a4,

i

i
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oY oY v,
(G,;,-— a,j}) Bu‘_ %VU =0 (67)

The conditions apply, respectively, to the fictitious plastic deformation process and the damage
process. Furthermore, if the values of ¢, D;;, ¢i;, and 7}, are fixed, then the values of G;; and \?2 are
also fixed, since G;;1s a function of state variables as defined by eqn (66), and P, is a state function.
For inequality (67b) not to be violated for an arbitrary choice of BU-, the following conditions
must hold

o,
Gi/ - aDU (68)
0¥
_ ‘YZ jv)fj >0 (69)
oy

For a more detailed investigation of a CDM model, the damage tensor D;; can be divided into two
parts, i.e.,

D, = Di,+D} (70)

The recoverable part Dj; is due to area reduction associated with the growth of microdefects
that can be recovered during unloading. The non-recoverable part Dj; involves the reduction of
area due to the extension of existing microcracks and/or the nucleation of microdefects.

In summary, the constitutive equations for an isothermal damaged continuum are given by the
following sets of equations and constraints

oY 0P
Gy= " with —'q>0 (71)
08, oqy;
5@2 . al’i’z A\
G; oD, wit o yi; =0 (72)
and
o, og,
G, = — — 73
Y 08 0Dy (73)

The equation of (71) characterizes the deformation of the fictitious undamaged continuum, and
the inequality of (71) constrains the evolution of plastic internal variables. The set of equation and
constraint (72) provides a relationship between the damage force G,; and the damage measure D,;.
It also provides a constraint on the evolution of damage internal variables. Finally, the coupling
between the deformation process and damage process is provided by eqn (73). This is further
explained in the subsequent paragraph.

Consider a fictitious, undamaged, element subjected to loading increment d P;,. During loading,
there are various forms of dissipation of energy associated with plasticity and damage processes.
In particular, the rate of energy dissipation (caused by the damage force) due to a unit damage
growth D;; with respect to the fictitious element is (6‘?’2/8D,-j)5,-j. At the end of the loading period,
it is required that the fictitious element returns to its undamaged state before the next loading can
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be applied. The restoring energy associated with this transformation is given by —G,:,-IS,:,, where
—Gj; is the restoring force. Because the damage needed to be restored at the end of a loading
period is equal to the negative of the damage growth during loading, the force associated with the
two processes must be equal in magnitude. Therefore, eqn (73) can be viewed as a constraint that
must be satisfied for the fictitious deformation and damage process to occur simultaneously
within the same continuum. In fact, this is a required constraint which arrives naturally from
thermodynamic consideration.

Equations and constraints in (71)—(73) provide a framework for theories of CDM. Explicit
constitutive equations may be obtained if functions for ¥, and ‘P, are specified. Explicit evolution
equations, which satisfy the inequalities of (71) and (72), for internal variables ¢;; and 7;; should
also be given. Different theories may be proposed based on this constitutive framework. One such
theory has been formulated by Wu and Nanakorn (1998) by use of concept of endochronic
plasticity. In that paper, the model has been applied to a one-dimensional case which describes
uniaxial monotonic compression and tension of a concrete specimen. It successfully describes the
strain-softening behavior after the peak load. In addition, the model has been applied to the
description of deformation behavior for cyclically loaded concrete and mortar specimens. Sat-
isfactory results have been obtained.

It is remarked that the internal variables are not observable. Using the evolution equations for
these variables, these variables do not necessarily appear in the final form of the constitutive
equations. Depending on the functional forms for ¥, and ¥, and the explicit forms for the
evolution equations for ¢;;, and y;,, a set of macroscopic parameters may be used for the model.
These parameters may then be determined from experiments.

7. A brief summary of authors’ endochronic CDM

CDM models based on endochronic theory of plasticity have been previously proposed. The
model of Valanis (1990) is for brittle materials, while the models of Niu (1989) and Chow and
Chen (1992) are for ductile materials. The model of Niu (1989) is limited to isotropic damage due
to the scalar representation of damage; the model of Chow and Chen (1992) is an anisotropic
damage model. Wu and Nanakorn’s model (1998) is applicable to ductile materials with anisotropic
damage. The equations of the Wu—Nanakorn model are summarized in this section for later
reference. This model is different than that of Chow and Chen (1992), which used neither the
damage internal variables y;; nor the concept of damage restoring force G;;. Instead, Chow and
Chen (1992) use D;; as an internal variable and express the damage evolution equations in terms
of the potential of damage dissipation and elastic strain energy release rate Y.

In the Wu—Nanakorn model, the governing equations and constraints are given by (71)—(73).
In this section, explicit forms of equations are derived by assuming the following quadratic forms
for ¥, (¢, ¢;;) and W, (D, v;):

ij>

~ ) 1 s o
¥, (5@/7 ‘7?/) = EZAUH(SU _qzj/) G — ) (74)

~ 1 .
¥, (Dija ij) = ) Z Hijkl(Dzj/ - ij) (D — ij;) (75)
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where 4., and H,;, are positive semi-definite fourth-order isotropic tensors. The free energies in
(74) and (75) are defined on the fictitious undamaged material, which is isotropic. Represent now
any fourth order isotropic tensor W, by

w.
I/I/i'k[ = Wl 5115]‘/+ W25ik5jla Wlth WO = 3 <W1 + 32> (76)

where W, and W, are constants, and symmetry of W, with respect to k and /is assumed. Also,
the variables may be decomposed into the deviatoric and hydrostatic parts as

~ ~ 1 ~ ~ ~ 1 ~ ~ ~F 1 ~p
Gy =8;+30,0 & =08;+30,8u ;= P;+350,qu (77a)
and

Gy = 9y+30,Gu Dy = dy+30;Dc 75 = riy+3 9,7 (77b)

Using these notations, the explicit form of constitutive equations for damaged materials may be
derived and are presented in the remaining part of this section.

7.1. Equations of deformation

The deformation behavior is characterized by the effective stress—effective strain relationship
given in (71). Using (74), this equation reduces to the following two equations by separating
hydrostatic and deviatoric components:

G = Y. Ao Cr— Jir) (78)
S~,jj = Z Arz (éljj _PNZ"/) (79)

where A} and A% are defined by (76) with W replaced by 4.
Within a linear assumption, the evolution equations for the hydrostatic and deviatoric parts of
¢;; are given in the following form

ddi, dp,
L5V< djf")—a,(k =0 and L5V< f’)—s}, =0 (80)

H dzp

where Y() indicates that the differentiation operator in brackets is corotational; L and L} are
constants; and dZ defines the intrinsic time with respect to the fictitious deformation. The intrinsic
time is a monotinically increasing parameter that is used to register the history of deformation in
an endochronic theory. The intrinsic time is divided into the hydrostatic and deviatoric parts.

An hydrostatic intrinsic time measure {y; is defined to register the hydrostatic deformation. It is
scaled by the intrinsic time scale zy so that it can properly describe strain-hardening. They are
related by
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with jg = h(Cy) > 0 (81)

d 6/{/\'

dé’H = m

déy —k,

where 0 < k, < 1 and K| is the Bulk Modulus.
The deviatoric intrinsic time (}, is defined based on an effective strain-like tensor Q which is
given by

Ydg, = —ky 5= (82)

vds,
2

where 0 < k, < 1 and g, is the shear modulus. The operator ¥d denotes the corotational increment
and is defined on a second-order tensor a,; with respect to the intrinsic time z as

where 'd denotes the increment based on material rate and w;; is the spin tensor.
The deviatoric intrinsic time is defined and scaled as follows:

d¢g =VvdQ,vdQ; Wlth dio _ =f({p) >0 (84)

In (81) and (84), h({y) and f({p) are the strain hardening functions corresponding to the hydrostatic
and deviatoric deformation, respectively.

7.2. Equations of damage

Equations (72) and (75) lead to the following relations for the hydrostatic and deviatoric parts
of damage force G,;, respectively,

Gy = ZHB (D —ix) (85)
glj = ZHSZ(dI/_rzs/) (86)

where H{ and H? are constants. In the hydrostatic damage, microdefects expand and/or contract
such that the overall symmetric properties of the material, i.e., all planes of symmetry, are retained.
In the deviatoric damage, changes in orientation of microcracks and/or microvoids result in
changes of overall symmetry properties and, thus, induce the anisotropic behavior of the material.

Using the inequality of (72), the linear evolution equations of y;; can be further separated into
hydrostatic and deviatoric parts as

d dr,
J‘V< V“‘) Gu=0 and J3 (r(;)_g,j:o (87)

dzy, dzp

where J§ and J3 are constants; dz{; and dzj; are the damage intrinsic time increment corresponding
to the hydrostatic and deviatoric damage, respectively. The hydrostatic damage intrinsic time and
its time scale are defined, respectively, by
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dG . désy
déd = |dD — ks ———| with —— = h%({) >0 88
gH ‘ kk 3 3B0 led—[ (CH) ( )

where 0 < k; < | and B, is a material constant. Similarly, the deviatoric damage intrinsic time and
its time scale are defined by

(dz3)? = YdR,"dR, with deb _ ) >0 (89a)

dzy
where the damage-like tensor YdR;; is defined by

Vdg,:,-

(89b)

with 0 < k, < 1 and M, is a material constant. The role played by material constants B, and M,
in the G,; vs D, relationship is similar to that played by the bulk modulus K, and shear modulus
o in the stress—strain relationship. The functions 4%({{}) and f¢({{) describe the material damage
resisting (hardening) behavior, which increases the damage threshold. These functions are similar
to the hardening functions /({) and f({p) of plastic deformation, but with a different physical
meaning.

The role played by (88) and (89) in damage is analogous to that played by (81) and (84) in the
stress—strain space for the limit case of k;, > 1 (i = 1, 2, 3,4). The relations (88a) and (89b) can be
interpreted as the non-recoverable hydrostatic and deviatoric parts of the damage tensor increment
dD,;, respectively. Note that (¢ is defined in terms of the non-recoverable damage D} rather than
the effective plastic strain &), as in the theories of Niu (1989) and Chow and Chen (1992). This
new damage intrinsic time enables the present theory to describe the behavior of damage in brittle
materials, where damage occurs within the elastic range, as well as in ductile materials.

7.3. Coupling between deformation and damage

The coupling between the deformation and damage process is achieved through damage force
G;; given by (73). Using the quadratic form of ¥, (&, ;) given in (74), (73) reduces to

0y

r ~ ~r r ~ po dN gkl
Gij = _zr: A/clnm (8mn - an) v <8Dl/> = _Z Aklmn (Emn - qmn)gpq v < del]] > (90)

Equation (90) relates the damage force G, to the effective strain &; and effective internal variables
di;» both of which are responsible for the deformation process of the fictitious continuum. On the
other hand, the damage force is related to the damage potential ¥, (D 7)) by eqn (72), which, by
use of (75), reduces to

o
=75

ij>

Z H?/k/ (D —vi1) (29)

r

This equation relates damage force G; to the damage tensor D;; and internal variables y;,. The
interpretations of (90) and (91) are as follows: consider a fictitious, undamaged, material element
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subjected to a loading increment. During loading, different forms of energy associated with
plasticity and damage process are dissipated. In particular, the rate of energy dissipation due to
damage growth D;; in the fictitious element is (a‘Pz/@D,-j)ﬁ,-j. At the end of the loading period, it is
required that the fictitious element returns to its undamaged state before the next loading can be
applied. The restoring energy associated with this process is —G;;D;;, where —G;; is the restoring
force and the negative of the restoring force, G;;, is given by (90). Because the damage to be restored
at the end of the loading period is equal to the negative of the damage growth during loading, the
force associated with the two processes must be equal in magnitude. Therefore, (91) with G
defined by (90), can be viewed as a constraint that must be satisfied for the deformation and
damage processes to occur simultaneously within the fictitious continuum. In fact, this is a required
constraint which arises naturally from the thermodynamic consideration.

8. Application

In this section, the model of the previous section is applied to investigate the problem of a
cylindrical concrete specimen subjected to uniaxial compression in the x;-direction. For such a
problem, the state of stress and strain is given by

00 O e, 0 0
0 0 o045 0 0 &35

where ¢;; is prescribed for a strain control test. These are the principal stress and strain components
and the directions of principal damage coincide with those of the principal stress and strain, if the
specimen is initially isotropic and is subjected to proportional loading. In this case, the corotational
rate reduces to the material rate. The increments of effective stress and effective strain are

00 O de,, O 0
0 0 d0~'33 0 O d§33
Their deviatoric parts are
ds; = 3 0 —dés; 0 (94a)
. 0 0 2dé ;5
L 0 _dgll_d€22+2d§33

The damage effect tensor M, is selected according to Bitten’s definition of effective stress. Using
(16) and (25), it is expressed in the matrix form as
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[ 0 |
(1-Dy)?
1
[M],; = 0 m 0 (95a)
1
0 0 —_—
- (1—Dj)*-

The inverse of this matrix is

(1—D,)? 0 0
[M,=| 0 (1—D,)> 0 (95b)
0 0 (1—D5)>

where D,, D,, and D5 are the principal damage in the x,-, x,- and x;-directions, respectively.

In this example, for the sake of simplicity, only one internal variable each for §;; and 7, is used.
The use of only one internal variable was shown in previous applications of endochronic plasticity
to be capable of capturing the main features of stress—strain responses in a plastically deformed
continuum. The hydrostatic behavior of the fictitious deformation is now considered. Combining
(78), (80a) and (81a), the following equation is obtained

d6 déy .
AO _k1X3K0 —(liX)dSkk (96)
where
O-kk
X = 97
Loh(Gy) &7

and A4, and L, are constants. The minus (—) and plus (+) signs, in (96), correspond to tension
and compression, respectively. The material constant 4, may be identified with the bulk modulus
3K, by considering the fictitious undamaged material as its initial loading state, where &, = §,, = 0.
Using the effective stress and effective strain of (93), (96) becomes

d0:33 = 3K0F(k15X)(d3~11 +d522 +d533) (98)
where
1+X G133
F(k,,X) = TkX and X_Loh(cﬂ) (99)

The deviatoric response of the fictitious undamaged material, from (79), (80b) and (94), is
described by

s
—d6yy = A,(2d8,, —dey, —diss) + 2722 4z, (100a)

2
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~ ~ ~ ~ A26~33
_d0-33 == Az(_dsll +2d822_d833)+ dZD (100b)
2
~ ~ ~ ~ A20-33
2d633 :AZ(_dgll_dSZZ +2d833)_szD (1OOC)

2

Equation (98) and the two independent equations of (100) can be put in the matrix form as

I —3K,F(k,,x) —3K,F(k,,x)|(dé55) (0] 3K, F(k,, X)
1 2A2 _A2 dgll +1 20—33dZD: A2 dg:;:; (101)
1 — 4, 24, de,) ) A,

where dzp, is related to the deviatoric components of the incremental effective strain dg; and its
relationship is now discussed. The following expression may be found from (82)

where
. k8
2
By use of (84) and (102a), the relation for dzp, is obtained as
O‘ OC +2OC,/ﬁ,/ dZD+(ﬁ11,81/ f(CD) )dZD - O (103)
The equation of hydrostatic damage is found from (85), (87a) and (88a) as
H, ThY3p =1£DdDy (104a)
where
G
—=_ (104b)
IS

and H,, B, and J, are material constants. Considering the initial loading state, where G, = y = 0,
it may be shown that H, is the initial slope of the G, vs Dy, curve and that H, = 3B,. The minus
(—) and plus (+) signs, in (104a), correspond to tension and compression, respectively. Equation
(104a) further reduces to

dGy = HOF(k3s Y) dDy (105)
where

Fle. vy = - 2Y 106

() =1y (106)

The equation for deviatoric damage response may be obtained from (86) and (87b) as



H.-C. Wu, C.K. Nanakorn | International Journal of Solids and Structures 36 (1999) 5057-5087 5081
d 9ij 1 4
g, = H: (dd; + % azi (107)
2

where H, and J, are constants and H, may be identified with the initial slope of the deviatoric g;;
vs D;; curve. Furthermore, H, = 2M,. The damage intrinsic time increment dzy is related to the
deviatoric components of the damage force increment dg;; and its relationship is now discussed.
The following expression may be found from (89b) and (107)

dR; = ofi+ B dzf, (108a)
where

= (1 k)39 ang po =9 (108b)

1y H2 1y Jz

By use of (89a) and (108a), the relation for dz{ is obtained as

otfjon + 205 Az + (BB — 1 ((5)*)(dzh)* = 0 (109)

Using (73) and (93), the damage force G;; reduces to
_ 08 . 085
G, = —ak,ﬁ;z —03353; (110)

Since ;3 = (1 —Ds)%.., &; does not depend on D, and D,. Consequently, the only non-zero
component of tensor G;; is

Gss = 21?3;3 (111a)
and its increment is found to be
dGss =12jj;3d§33+12_8313)3d&33+56_3§32d1)3 (111b)
Thus, the deviatoric part of the increment of the damage force is
. —dGs; 0 0
dgi,:§ 0 —dGs; 0 (111c)
0 0 2dG;;
Furthermore,
| 2dD, —dD,—dD; 0 0
dd; =3 0 —dD,+2dD,—dD;, 0 (112)
0 0 —dD, —dD,+2dD;

Equations (111c) and (112) are substituted into (105) and the two independent equations of (107)
to obtain the following matrix equation for the damage process:
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HyF(ky,y) HoF(ks,y) HyF(ks,y)]{dD, 1 0 .G
2H2 —H2 —H2 dD2 == —1 dG33— 1 ?] 33d.ZdD (113)
—H, 2H, —H, |ldp)) (=1 iy

The equations derived in this section are now applied to the problem of uniaxial compression
of cylindrical concrete specimen (f, = 73.8 Mpa and E = 27.6 GPa). To determine the material
parameters for the model, the analytical stress—strain curves obtained by Fonseka and Krajcinovic
(1981) is used. In this case, the directions of the principal damage coincide with those of the
principal stress. The procedure of calculation is now described. An increment d&,; is first specified.
An initial value for dzp is assumed and equation (101) solved for dés;, d&,, and d&,,. These values
are then used in (103) to solve for dzy. An iteration procedure is applied to determine dzp, for the
specified d&;;. An initial value for dD; is then assumed, which is used in (111b) to determine dGs;.
Equation (109) is subsequently used to determine dz{,. Thus, dD;, dD,, and dD; are found from
(113). An iteration procedure is also applied on dD; to determine its value which corresponds to
the specified d&;;. Knowing d&;; and dD;, des; can be calculated from the incremental form of

€33

T (1-Dy) (o

€33

This procedure continues for another specified d&;;.

Using a trial-and-error (curve fitting) procedure, the following material parameters for the
deformation equations have been determined: Poisson’s ratio = (.2, effective hydrostatic yield
stress L, = 4.55 Mpa, effective deviatoric yield stress L, = 18.61 Mpa, strain hardening parameters
Pu= Pa=0, and k, = k, = 0.95. The material parameters for the damage equations have been
found to be: hydrostatic damage modulus H, = 0.78 MPa, deviatoric damage modulus H, = 1.91
MPa, hydrostatic damage threshold J, = 0.61 MPa, deviatoric damage threshold J, = 1.93 MPa,
damage resisting (hardening) parameters 8 = f5 = 0, and k; = k, = 0.95.

The computed stress—strain curves are plotted in Fig. 3. There are two curves in this figure. One
curve is for the axial strain and the other for the lateral strain. The volumetric strain vs compressive
stress is plotted in Fig. 4. The curve shows a change of sign of the volumetric strain as the axial
strain increases. The volumetric strain is initially negative and it changes to positive when the axial
strain becomes large in magnitude. This phenomenon is typical in concrete and rocks, and it is due
to the increase in the lateral-to-axial strain ratio [— (g;,/€33)] as the axial strain increases. It is seen
in Fig. 5 that this ratio changes from 0.2 to approximately 0.6 as the axial compressive strain
increases from zero to 0.005. The results of this model presented in Figs 3 and 4 show good
agreement with the computed value obtained by Fonseka and Krajcinovic (1981).

9. Conclusions

The concepts of CDM have been discussed and a constitutive framework of CDM has been
developed based on the internal variables approach. The framework involves transforming the
actual damaged continuum into an equivalent fictitious undamaged continuum. The effects of
damage are accounted for by replacing the actual stress ¢,; (gross stress) on the damaged continuum
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with the symmetric effective stress &,;. A distinction has been made between the state of damage

and

the damage measure D;; and the concept of ‘damage force’ has been introduced.

Within the proposed constitutive framework, the endochronic concept has been used to derive
explicit constitutive equations. Two intrinsic times are used in the formulation. The first intrinsic
time ( is used to describe the plastic deformation history of the fictitious undamaged continuum

and

the second intrinsic time {“ is used to depict the damage history. The model is applicable to

both brittle and ductile materials with damage.
The following conclusions may be drawn from this study:

()
)
(€)
(4)
)

The damage tensor D;; may be defined based on a second-order continuity tensor v,,.

The damage effect tensor M, defined by Betten (1983) gives rise to an effective stress which
has a simple physical interpretation, while other definitions of M;;, do not have the same
significance.

The transformation equation for effective strain, eqn (51a), may be derived based on the free
energy equivalence postulate.

In addition to damage tensor D, which is a measurable quantity, a set of damage internal
variables y;;, which are not measurable, is used in the formulation.

The constitutive equations for an isothermal damaged continuum include two sets of equations
and constraints. The first set characterizes the deformation of the fictitious undamaged con-
tinuum and constrains the evolution of plastic internal variables ¢;,. The second set provides
a relationship between the damage force G;; and the damage measure D,;. It also provides a
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constraint on the evolution of damage internal variables };. In addition, eqn (73) must be used
to complete the constitutive equations. This equation is a constraint that must be satisfied
for the fictitious deformation and damage process to occur simultaneously within the same
continuum.

(6) The theory does not use the concepts of yield surface or damage surface as its prime requisite
although both surfaces may be defined when necessary by setting all k; = 1. Therefore, the
constitutive equations of this theory are continuous without discontinuities, which is advan-
tageous in the numerical calculation.

(7) The proposed model has been shown to describe the three-dimensional state of deformation
of a cylindrical concrete specimen subjected to uniaxial compression.

The focal point of this paper is to formulate a constitutive framework that is self-consistent.
Some well-known concepts have been discussed and it has been pointed out that some concepts
are not compatible with others. Only concepts that are compatible to each other are used in the
derivation. New concepts such as the distinction between the state of damage and damage measure
and the concept to restore the fictitious continuum to its undamaged state after each step of
deformation and damage have been introduced in this paper. The paper uses the corotational rate
to account for rotation of principal damage directions during deformation.

Appendix

In this study, the damage force G;; is a thermodynamic force associated with a unit damage
growth BU-. This definition of thermodynamic force, eqn (55), is different than the definition that
is often defined in CDM. Commonly, the thermodynamic force is known as the damage energy
release rate Y associated with a unit damage growth B,;,- and can be defined in the principal damage
coordinate frame, where Bi, reduces to D;;, as

oY

Y,;D; >0 with Y, = — .
ij

(A1)
where V¥ is the Helmholtz free energy. The concept was first introduced by Chaboche (1977), as
an analogy to the energy release rate associated with crack extension in Fracture Mechanics, and
it has been adopted by many studies in CDM (Ju, 1989; Woo and Li, 1992; Chow and Chen,
1992). Using the notations of this writing, the damage energy release rate Y;; becomes

Y o— _ aq](gzja qi‘j’ V:Yj) _ a\Pl 08y _ aq’] O _ aqu (A2)
Comparing eqns (66) and (A2), it is clear that the damage force G,; is different than the damage
energy release rate Y;;as defined by eqn (A1). However, if the elastic action is the only consideration,
the damage force G,; can be compared to the elastic strain energy release rate associated with a
unit damage growth defined by Chaboche (1977) and given by
oY, oY, 08,
Y, = — = — A3

! oDy og;, 0D (A
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where ¥, = %C riéyer 18 the fictitious elastic strain energy, with &, representing the effective elastic
strain. In this case, the Helmholtz free energy ¥, given by eqn (59), reduces to

P = 1@+ 2Dy ) (A4)
where the potential W, is now identical to the elastic strain energy .. Thus, eqn (66) becomes

oY, o0g, VY. o0&,
Gi‘ = — = — A5
’ o8, 0Dy g, 0D (83)

which is identical to the expression of eqn (A3).
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