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Abstract

The concepts of continuum damage mechanics "CDM# are discussed and a constitutive framework of
CDM is proposed for in_nitesimal deformation based on the internal variables approach[ The framework
involves transforming the actual damaged continuum into an equivalent _ctitious undamaged continuum[
A distinction is made between the state of damage and the damage measure[ The development makes use of
the concept of {damage force|[ The negative of the damage force is related to the energy required to restore
the _ctitious undamaged continuum to its undamaged state after each step of deformation and damage[

A set of equation and constraint governs the deformation of the _ctitious continuum\ while another set
of equation and constraint governs the damage behavior[ The coupling between the deformation and damage
processes is provided for by the damage restoring force concept[

Within the proposed constitutive framework\ the endochronic concept has been used to derive explicit
constitutive equations[ The proposed model has been shown to describe the three!dimensional state of
deformation of a cylindrical concrete specimen subjected to uniaxial compression[ Þ 0888 Elsevier Science
Ltd[ All rights reserved[

0[ Introduction

A typical work in continuum damage mechanics "CDM# often involves the damage e}ect
variables in the sense of Kachanov "0847# and the e}ective stress:e}ective strain concepts[ Conse!
quently\ the damage mechanics theories are often derived from the usual constitutive theories by
use of e}ective variables\ which take into account the e}ects of damage\ in place of original
variables[ The thermodynamics framework of CDM often involves either the concept of the strain
equivalence postulate "Lemaitre and Chaboche\ 0867#\ the strain!energy equivalence postulate
"Sidoro}\ 0870^ Lemaitre and Chaboche\ 0874#\ or the hypothesis of stress working equivalence
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"Chow and Lu\ 0881# along with the concepts of continuum mechanics and irreversible changes
in the material internal structure[ The microdefects are represented at the macroscopic level by a
damage variable[ A typical elastoplastic damage theory is based on the generalized damage theory
initially proposed by Chaboche "0866# and later by Lemaitre "0874#[ In the 0874 paper\ Lemaitre
proposed that the damage energy release rate\ i[e[\ energy release by the system during the damaging
process\ is related to the elastic strain energy[ The damage energy release rate is de_ned by the
thermodynamic force conjugate to damage evolution[ This treatment amounts to an uncoupled
consideration between plasticity and damage processes[

These concepts of CDM have been proposed by di}erent authors associated with di}erent
de_nitions and theories\ and not all of them are needed in one theory[ Some of the aforementioned
concepts and de_nitions are not even compatible to each other[ One of the purposes of this paper
is to discuss the existing concepts of CDM and to propose a CDM constitutive framework using
a set of concepts in a uni_ed manner[ Further constitutive modeling is required to arrive at explicit
constitutive equations for CDM\ which may be achieved by use of concept such as damage
potential within the proposed constitutive framework[ Another approach is to formulate the
constitutive equations based on an endochronic concept and still using the same constitutive
framework[ The second purpose of this paper is to develop such an endochronic formulation for
CDM[ An example will also be given to illustrate the application of the theory[

In Section 1\ the continuity tensor and the anisotropic damage tensor are de_ned[ The concepts
of continuity tensor and damage tensor are well!known\ but the derivation presented is easy to
follow and is di}erent from the existing one[ The concepts of gross stress\ net!stress\ e}ective stress
and damage e}ect tensor are discussed in Section 2[ The thermodynamics constitutive framework
for CDM is discussed by use of internal state variables and presented in Section 3[ According to
this approach\ the damage tensor is a measurable quantity which works together with the concept
of damage internal variables[ The damage internal variables de_ne the state of damage[ Concepts
such as the {damage force| and the {restoring force| are discussed[ In Section 4\ the plastic
deformation and damage processes are discussed and in Section 5\ the constitutive equations and
constraints for plastic deformation and damage are presented[ The two processes are related by
the {restoring force|[ In this discussion\ co!rotational rates are used to account for rotation in the
principal axes of damage[ Author|s endochronic CDM is brie~y summarized in Section 6 and in
Section 7\ an application related to a cylindrical concrete specimen subjected to axial compressive
stress is presented[

1[ The anisotropic damage tensor

This work uses a second order tensor as a parameter of damage[ The tensor de_nes the loss of
net area of material as in the original work of Kachanov "0847#[ The presentation of damage
tensor Dij in this section follows previous works of Murakami and Ohno "0870# and Betten "0872#\
in which the damage tensor is constructed using area vectors related to Cauchy|s tetrahedron in a
damaged state[ In Murakami and Ohno|s anisotropic damage theory of creep\ the second rank
symmetric damage tensor Dij is derived by representing the e}ects of microscopic grain!boundary
cavities in terms of dyadic product of the unit normal vector to the relevant boundary[ On the
other hand\ in a macroscopic approach\ Betten derived the damage tensor from a third order\
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Fig[ 0[ De_nition of the damage measure*the load bearing area[

skew!symmetric\ continuity tensor which represents the area vector[ In the present work\ the
derivation of Dij is similar to Betten|s derivation\ but a second!order continuity tensor is used\
which provides a simple and more meaningful physical interpretation[

Consider a di}erential tetrahedron of an undamaged material as shown in Fig[ 0"a#[ Note that
the _gure shows a special case where xi!axes coincide with the principal damage axes[ In general\
if dS " j#

i denotes the i!component of a gross area element which has the normal n" j#
k \ then dS " j#

i can
be characterized by

dS "0#
i � −0

1
eijk dx"1#

j dx"2#
k

dS "1#
i � −0

1
eijk dx"2#

j dx"0#
k

dS "2#
i � −0

1
eijk dx"0#

j dx"1#
k
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dS "3#
i � −0

1
eijk"dx"0#

j −dx"2#
j #"dx"1#

k −dx"2#
k # "0#

where eijk is the permutation tensor and the vectors dx" j#
i do not coincide with the principal damage

axes in the general case[ The sum of these vectors is zero due to closure of the surface area of
tetrahedron\ i[e[\

dS "0#
i ¦dS "1#

i ¦dS "2#
i ¦dS "3#

i � 9i "1#

Consider now a tetrahedron of a material with internal damage as shown in Fig[ 0"b#[ The nominal
dimensions of this tetrahedron are the same as those for Fig[ 0"a#\ but the areas are reduced by
scalar factors a\ b\ g\ and k from the previous tetrahedron with their corresponding normals
unchanged[ Then\ the area vectors are

dSÞ"0#
i � −0

1
aijk dx"1#

j dx"2#
k � a dS "0#

i

dSÞ"1#
i � −0

1
bijk dx"2#

j dx"0#
k � b dS "1#

i

dSÞ"2#
i � −0

1
gijk dx"0#

j dx"1#
k � g dS "2#

i

dSÞ"3#
i � −0

1
kijk"dx"0#

j −dx"2#
j #"dx"1#

k −dx"2#
k # � k dS "3#

i "2#

where aijk � aeijk\ bijk � beijk\ gijk � geijk and kijk � keijk[ The areas in eqn "2# represent net cross!
sectional areas of the element[ These are the areas that are e}ectively resisting loads and are
perpendicular to the coordinate axes x0\ x1\ and x2\ respectively[ Note that dSÞ"3#

i denotes the inclined
side[ The parameters a\ b and g will be further discussed later in this section[ It is noted that the
vectors dSÞ"0#

i \ [ [ [ \ dSÞ"3#
i \ de_ned in eqn "2#\ and the corresponding dS "0#

i \ [ [ [ \ dS "3#
i \ de_ned in eqn

"1#\ di}er in length\ and the condition of closure cannot be satis_ed\ i[e[

dSÞ"0#
i ¦dSÞ"1#

i ¦dSÞ"2#
i ¦dSÞ"3#

i � 9i "3#

except for the case of isotropic damage where a � b � g � k[
Because of the existence of microcavities in the material\ the load!carrying net areas of the

damaged continuum\ Fig[ 0"b#\ are reduced[ It is now postulated that there exists a _ctitious
undamaged continuum\ as shown in Fig[ 0"c#\ which is mechanically equivalent to the damaged
continuum[ Thus\ the damage state is represented by the _ctitious undamaged continuum such
that

dS
"0#
i � −0

1
eijk dx¼ "1#

j dx¼ "2#
k � dSÞ"0#

i

dS
"1#
i � −0

1
eijk dx¼ "2#

j dx¼ "0#
k � dSÞ"1#

i

dS
"2#
i � −0

1
eijk dx¼ "0#

j dx¼ "1#
k � dSÞ"2#

i

dS
"3#
i � −0

1
eijk"dx¼ "0#

j −dx¼ "2#
j #"dx¼ "1#

k −dx¼ "2#
k # "4#

where dx¼ " j#
i de_ne the _ctitious di}erential tetrahedron[ Furthermore\ the closure of the _ctitious

undamaged continuum is assumed to be satis_ed\ Thus\

dS
"0#
i ¦dS
"1#

i ¦dS
"2#
i ¦dS
"3#

i � 9i "5#
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The three area vectors dS
" j#
i in "4# are identical to the vectors dSÞ" j#

i in "2# and are related to the
vectors dS " j#

i in "1# by scalar factors a\ b\ and g\ respectively[ The fourth vectors dS
"3#
i and dSÞ"3#

i

are di}erent in both magnitude and direction[ Since "4# is used in the remaining part of this paper\
the parameter k is not important and will not be further discussed[ It is reasonable to assume that
dS
"3#

i and dS "3#
i are related by a linear relation

dS
"3#
i � cij dS "3#

j "6#

where cij is a second!order tensor[ In eqn "6#\ dS
"3#
i represents the e}ective load!carrying area of

the damaged material and dS "3#
j is the gross area on the inclined face of the material element[

Therefore\ tensor cij represents the fraction of dS "3#
j that can be used to carry load\ accounting for

the e}ect of damage[ Tensor cij is referred to as the {continuity tensor|\ since it describes the
continuity state of the material[

The continuity tensor cij can be determined directly from eqn "6#[ Substituting "0# and "1# into
the right!hand!side of eqn "6# and eqns "2#\ "4# and "5# into the left!hand!side of eqn "6#\ one has

aijk dx"1#
j dx"2#

k ¦bijk dx"2#
j dx"0#

k ¦gijk dx"0#
j dx"1#

k

� cirerjk"dx"1#
j dx"2#

k ¦dx"2#
j dx"0#

k ¦dx"0#
j dx"1#

k # "7#

If the vectors dx" j#
i are aligned with the coordinate axes xi\ respectively\ then dx" j#

i � dij =dsj = "no
sum on j#\ where =dsj= de_nes the magnitude of the vector dx" j#

i [ Then\ for i � 0\ eqn "7# becomes

"c00−a#e012 =ds1 = =ds2 =¦c01e120 =ds2 = =ds0 =¦c02e210 =ds0 = =ds1 = � 9 "8#

Since =dsj=\ the magnitudes of dx" j#
i \ are independent of each other\ they can be independently

varied[ But\ due to the closure assumption\ eqn "8# cannot be violated[ Therefore\ eqn "8# can be
satis_ed for all values of =dsj=\ if and only if

c00 � a\ c01 � 9\ c02 � 9 "09#

Similar discussion may be made for i � 1 and 2[ Thus\ the continuity tensor is obtained to be

cij � &
a 9 9

9 b 9

9 9 g' "00#

It is seen that when the xi!axes are principal damage axes\ the continuity tensor cij is in a diagonal
form[

In the case of uniaxial tension along the x0!direction\ let s be the total gross cross!sectional area
and s¼ be the e}ective area of resistance so that s¼ ³ s[ In view of eqn "6#\ vectors dS
"3#

i and dS "3#
i

are represented by ðs¼\ 9\ 9ŁT and ðs\ 9\ 9ŁT\ respectively\ with n"3#
i � ð0\ 9\ 9ŁT[ Then\ by use of eqn

"00#\ eqn "6# reduces to

s¼ � cs "01#

where c � c00 � a[ Therefore\ c � s¼:s represents that fraction of the cross!sectional area which
can be used to resist load[ When c � 0\ the material is in the virgin state without damage and s¼ is
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identical to s[ When c � 9\ the material can no longer resist load\ since its e}ective area of
resistance is reduced to zero[

The damage tensor is de_ned as a complementary "dual# tensor of continuity "Rabotnov\ 0858#[
In other words\ the damage tensor represents the fraction of the cross!sectional area that got
reduced by microdefects[ In the uniaxial loading case\ the damage variable can be expressed in
terms of the continuity variable c as

D �
s−s¼

s
� 0−c "02#

Thus\ D � 9 corresponds to the undamaged state and D � 0 corresponds to the breaking state of
the material[ In the multiaxial case\ a second!order damage tensor Dij is de_ned as

Dij � dij−cij "03#

In the special case\ when the xi axes are also the principle axes of damage\ tensor cij is given by
"00#\ and the damage tensor is given by

Dij � &
D0 9 9

9 D1 9

9 9 D2
'� &

0−a 9 9

9 0−b 9

9 9 0−g' "04#

It is seen that the principal values D0\ D1\ and D2 are related to the principal!continuity variables
a\ b and g\ respectively[ These principal values Di can be measured on the test specimens cut along
mutually perpendicular directions x0\ x1\ and x2\ respectively[ Alternatively\ the continuity tensor
is given in terms of the principal values of damage tensor as

cij � &
a 9 9

9 b 9

9 9 g'� &
0−D0 9 9

9 0−D1 9

9 9 0−D2
' "05#

where a � 0−D0\ b � 0−D1\ and g � 0−D2[

2[ Gross stress\ net!stress and effective stress

In the previous section\ a de_nition of damage is derived by introducing a _ctitious undamaged
continuum which is mechanically equivalent to the actual damaged continuum[ In this section\
various de_nitions of stress\ such as the gross stress\ the net!stress\ and the e}ective stress\ are
discussed[ The gross stress or the Cauchy stress\ sij\ is the stress de_ned on the actual damaged
continuum while the net!stress\ s¼ ij\ and the e}ective stress\ s½ ij\ are the non!symmetric and symmetric
stress\ respectively\ de_ned on the _ctitious undamaged continuum[

By considering the actual damaged continuum and the _ctitious undamaged continuum under
the same applied force\ the corresponding stresses on the two continua are di}erent\ since the
stresses are calculated over di}erent cross sectional areas of the continua[ If the equilibrium of the
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Fig[ 1[ De_nition of stress tensors and the pseudo!force[

actual damaged continuum is considered\ Fig[ 1"a#\ one can derive the relation between the stress
vector pi and the stress tensor sij\ i[e[\

pi � sjinj "06#

where ni is the unit normal of an area element dS[ Similarly\ the equilibrium of the _ctitious
undamaged continuum\ with an area element dS
 and unit normal n¼i\ Fig[ 1"b#\ yields

p¼i � s¼ jin¼ j "07#

where s¼ ij is the net!stress acted on the _ctitious undamaged continuum and p¼i is the corresponding
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stress vector[ Since the area elements dS and dS
 are subjected to the same force\ i[e[\ dP
i � dPi\
one can conclude that

dPi � pi dS � sjinj dS � s¼ kin¼k dS
� p¼i dS
� dP
i "08#

where dS and dS
 are scalar quantities and the corresponding vector expression is obtained from
eqn "6# as n¼i dS
� cijnj dS[ Thus\ eqn "08# becomes

"sji−s¼ kickj#nj dS � 9 "19#

and it follows that

sij � ckis¼ kj and s¼ ij � c−0
ik skj "10#

By use of eqn "00#\ the net!stress s¼ ij is found to be

s¼ ij �

K

H

H

H

H

H

H

k

s00

a

s01

a

s02

a

s10

b

s11

b

s12

b

s20

g

s21

g

s22

g

L

H

H

H

H

H

H

l

"11#

which shows that the net!stress s¼ ij is non!symmetric\ except for the case of isotropic damage[ It is
not convenient to use the non!symmetric stress tensor s¼ ij together with a symmetric strain tensor
and:or strain rate in the constitutive equations[ Therefore\ new symmetrical stress measures\ the
e}ective stress s½ ij\ have been de_ned on the _ctitious undamaged continuum and used in the
constitutive equations[ Various de_nitions have been proposed to symmetrize s¼ ij[ These de_nitions
may be summarized based on various transformations operated on the net stress s¼ ij[ They are]

"a# Betten "0872# proposed a {transformed net!stress tensor|\ which is an e}ective stress subjected
to the following transformation

s½ ij �
0
1
"s¼ ijc

−0
kj ¦c−0

ki s¼ jk# "12#

Using eqn "10#\ the expression becomes

s½ ij �
0
1
"c−0

ik c−0
ij ¦c−0

jk c−0
li #skl � Mijklskl "13#

where

Mijkl �
0
1
"c−0

ik c−0
lj ¦c−0

jk c−0
li # "14#

The fourth!order transformation tensor Mijkl is referred to as the {damage e}ect tensor|[ For cij

having the diagonalized form of eqn "00#\ eqn "13# can be expressed in the matrix form as
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F

G

G

j

J

G

G

f

s½00

s½11

s½22

s½01

s½12

s½20

J

G

G

f

F

G

G

j

�

K

H

H

H

H

H

H

k

0:a1 9 9 9 9 9

0:b1 9 9 9 9

0:g1 9 9 9
0:ab 9 9

sym 0:bg 9
0:ga

L

H

H

H

H

H

H

l

F

G

G

j

J

G

G

f

s00

s11

s22

s01

s12

s20

J

G

G

f

F

G

G

j

"15#

or

s½ ij � &
s00:a

1 s01:ab s02:ag

s10:ab s11:b
1 s12:bg

s20:ag s21:bg s22:g
1 ' "16#

which is a symmetric stress tensor[
"b# The e}ective stress proposed by Cordebois and Sidoro} "0868#\ also by Chow and Wang

"0876#\ is de_ned through its components given by

s½ ij � zs¼ ijs¼ ji "no sum on i or j# "17#

Since the right!hand!side of "17# is not a tensor operation\ the e}ective stress s½ ij as de_ned by eqn
"17# is not a tensor[ However\ in the matrix form\ the above de_nition of e}ective stress can also
give rise to a linear relationship between s½ ij and sij[

"c# In the study of anisotropic damage in the ductile solids Stumvoll and Swoboda "0882# de_ned
the e}ective stress as the symmetric part of the net!stress tensor\ i[e[\

s½ ij �
0
1
"s¼ ij¦s¼ ji# � 0

1
"c−0

ik djl¦dikc
−0
jl #skl "18#

where the damage e}ect tensor is

Mijkl �
0
1
"c−0

ik djl¦dijc
−0
jl # "29#

By use of eqn "05#\ Mijkl may be written in terms of the principal damage D0\ D1 and D2 and it can
be reduced to a form used by Rabotnov "0857# and later by Chow and Lu "0878#[

In all cases\ the e}ective stress s½ ij is related to the Cauchy stress sij by the equation

s½ ij � Mijklskl "20#

where the exact expression for the damage e}ect tensor Mijkl depends on the method used in
symmetrizing s¼ ij[ With respect to the principal damage coordinate system\ the damage e}ect tensor
Mijkl is represented by a 5×5 diagonal matrix[ In a special case\ if the directions of principal
stresses coincide with those of the principal damage\ then these equations further reduce to

8
s½00

s½11

s½22
9� &

M0000 9 9

9 M1111 9

9 9 M2222
' 8

s00

s11

s22
9 "21#

where M0000\ M1111\ and M2222 are functions of principal damage variables D0\ D1\ and D2[
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The interpretation of the e}ective stress is now investigated[ The net!stress tensor s¼ ij is an actual
non!symmetric stress acting on the _ctitious\ undamaged continuum\ which is subjected to the
same applied force as the original\ actual\ damaged continuum\ i[e[\ dP
i � dPi[ On the other hand\
the e}ective stress tensor s½ ij is the _ctitious symmetric stress acting on the _ctitious undamaged
continuum due to the application of the pseudo!force dP	i\ as shown in Fig[ 1"c#[ To validate this
statement\ the Cauchy formula\ relating the pseudo!force dP	i to the e}ective stress s½ ij is

dP
i � s½ jin¼ dS
 "22#

where n¼i and dS
 were previously de_ned on the _ctitious undamaged element[ Using eqns "6# and
"20#\ the above relation can be rewritten in terms of the Cauchy stress and the area element ni dS
as

dP	i � Mjiklskln¼ j dS
� Mjiklsklcjmnm dS "23#

If Betten|s de_nition of damage e}ect tensor\ eqn "14#\ is used\ eqn "23#\ becomes

dP	i � c−0
ji dPj "24#

Equation "24# established that the pseudo!force dP	i is related to the original applied force dPi by
the inverse!transpose of the continuity tensor cij[ If\ on the other hand\ the damage e}ect tensor
is de_ned by eqn "29#\ then the pseudo!force on the _ctitious undamaged element is

dP	i �
0
1
"dPi¦s¼ ijn¼ j dS
# � 0

1
"dPi¦c−0

ik sjkn¼ j dS
# "25#

It is noted that dP
i � s¼ jin¼ j dS
� s¼ ijn¼ j dS
\ due to the non!symmetric property of s¼ ij[ The last term of
"25# can be viewed as an additional abstract!force due to the actual stress sij acting over the area
of the _ctitious undamaged continuum\ i[e[\ n¼j dS
[ Therefore\ the pseudo!force corresponding to
this de_nition of e}ective stress has no simple physical interpretation[

3[ An internal state variables theory

Based upon concepts of continuum mechanics and irreversible thermodynamics with internal
variables\ the ClausiusÐDuhem inequality with respect to the actual\ damaged continuum is given
by "see Valanis\ 0860#

sijo¾ij−Cþ"oij\ qr
ij\ Dij\ gs

ij\ u#−huþ−
0
u

hju\j − 9 "26#

In "26#\ the Helmholtz free energy C is a function of total "elastoplastic# strain oij\ damage measure
Dij\ temperature u\ and two sets of internal state variables qr

ij and gs
ij[ There are n number of internal

variables qr
j "r � 0\ 1\ [ [ [ \ n# which describe the state of plastic deformation and m number of

internal variables gs
ij "s � 0\ 1\ [ [ [ \ m# which specify the state of damage in the continuum[ hi is heat

~ux vector and h is entropy density[
In a typical damage mechanics model\ the damage tensor Dij is treated as an internal state

variable "it is macroscopically not measurable by de_nition# that describes the irreversible process
of internal structure due to microdefects[ However\ in the present work\ the damage tensor Dij is
not an internal state variable and it represents a measurable quantity\ i[e[\ the fraction of reduction
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in load!resisting area[ It is a measurable quantity in the description of damage\ even though it may
be di.cult to measure[ The role played by Dij in the description of damage is similar to the role
played by strain\ which is also measurable\ in the description of plastic deformation[

In this work\ a set of internal state variables gs
ij is introduced to describe the state of internal

damage as a result of growth and:or nucleation of microcracks and:or microvoids[ The set of m
internal variables gs

ij\ which evolves with loading histories\ is introduced to distinguish one internal
state of damage from the other\ similar to the set of internal variables qr

ij which describes the state
of plastic deformation that cannot be uniquely described by the plastic strain alone[ The damage
variable Dij describes the current fraction of area reduction but not the state of damage[ To
elaborate\ two continua of the same initial damaged state\ when undergoing di}erent loading
histories\ may end up having the same load!resisting area momentarily\ hence the same value of
Dij\ but having two di}erent states of damage[

The concept of using both damage tensor Dij and damage internal state variables gs
ij in this work

is similar but not equal to the concept of Krajcinovic "0874# proposed for the brittle CDM model[
In Krajcinovic|s model\ the microcracks vector _elds v"i#\ treated as internal variables\ are used to
describe the state of damage\ and a scalar damage measure D is used to describe the overall damage
of the material[ However\ D is the macroscopic counterpart of the microscopic v"i# "they are related
by an integral# and D is\ therefore\ not measurable[ In the present work\ Dij is de_ned by a
de_nition not directly related to gs

ij and it is in~uenced by the current loading condition[ Thus\ at
the same state of damage\ a di}erent incremental loading state will give rise to a di}erent increment
of Dij[ Hence\ dDij is di}erent\ when the material element is subjected to incremental tension\
compression or shear[ As an illustration\ consider uniaxial tension of a cylinder[ The majority of
the microcracks will develop in the plane perpendicular to the maximum tensile strain[ If the
specimen is then unloaded and subsequently subjected to a small compressive stress along its axial
direction\ the specimen will behave as though it were undamaged up to a certain compressive stress
threshold\ since all of the microcracks will be passive "crack closure#[ Consequently\ the initial
increment of Dij depends on whether the stress increment is tensile or compressive\ even though
the state of damage is the same at that moment[ Furthermore\ with the second!order tensor
representations of Dij and gs

ij\ the proposed theory is capable of describing both spherical "e[g[\
void volume fraction# and planar "e[g[\ a system of planar microcracks# e}ects\ and their inter!
actions\ of microcracks[

In the _ctitious undamaged con_guration\ the volume and surface area of the continuum are
reduced by excluding the volume and area of the continuum that were previously occupied by
microdefects[ These are denoted by V
 and S
\ respectively[ Consequently\ the _ctitious undamaged
matrix material becomes homogeneous and isotropic[ For a given force _eld P
i � Pi\ the _rst law
of thermodynamics written for this _ctitious undamaged continuum\ is

d
dt gV
 0

0
1

v¼iv¼i¦u¼1 r¼ dV
 � gV


r¼b¼iv¼i dV
¦gS


"s¼ jiv¼i−h¼ j#n¼ j dS
¦gV


r¼ dV
 "27#

where "g# is used to indicate that the quantity is associated with the _ctitious undamaged
continuum[ In "27#\ v¼i is the velocity^ u¼ is the internal energy density^ r¼ is the mass density^ b¼i is the
body force^ and r¼ is the heat source term[ The _rst term in the surface integral represents the rate
of work done by surface traction and is expressed in terms of the non!symmetric net!stress
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tensor s¼ ij[ When the pseudo!force _eld P	i is introduced to the _ctitious continuum so that the
corresponding e}ective stress s½ ij is symmetric\ eqn "27# is written as

d
dt gV
 0

0
1

v½iv½i¦u¼1 r¼ dV
 � gV


r¼b¼iv½i dV
¦gS


"s½ jiv½i−h¼ j#n¼ j dS
¦gV


r¼ dV
 "28#

Due to the use of pseudo!force _eld P	i\ the velocity vector in the con_guration is v½i instead of v¼i\
as indicated in eqn "28#[ Consequently\ the deformation of the _ctitious undamaged continuum
subjected to pseudo!force _eld P	i is di}erent from that subjected to force _eld Pi[ The rate of
deformation for the _ctitious undamaged con_guration is then de_ned by

o½¾ij �
0
1 0

1v½i

1xj

¦
1v½ j

1xi1 "39#

where o½ij de_nes the deformation of the _ctitious undamaged continuum "with pseudo!force _eld
P	i# and is referred to as the e}ective strain[ According to eqn "39#\ the relationship between the
e}ective strain o½ij and the actual strain oij depends on transformations between velocity vectors
from vi to v¼i and from v¼i to v½i[ In general\ the explicit forms of these transformations are di.cult
to de_ne due to the complexity of the geometry and mathematics involved[ In this work\ the
e}ective strain o½ij is expressed in terms of damage tensor Dij and actual strain oij\ and this relationship
will be discussed later in this section[

The postulate of free energy equivalence is applied in the subsequent discussion[ According to
this postulate\ which was initially proposed by Cordebois and Sidoro} "0868# in the form of strain!
energy equivalence\ the free energy for an actual\ damaged material has the same form as that for
a _ctitious\ undamaged material\ but the variables are replaced by the e}ective quantities[ Thus\

C	"o½ij\ q½r
ij\ gs

ij\ u# 0 C"oij\ qr
ij\ Dij\ gs

ij\ u# "30#

where q½ r
ij|s are the e}ective qr

ij|s[ Note that Dij does not explicitly appear as one of the state variables
on the left!hand!side of "30#[ In view of eqn "30#\ the free energy available to do mechanical work
and stored in the _ctitious continuum is the same as that stored in the actual continuum\ resulting
in an equivalent mechanical behavior[

The second law of thermodynamics and the equation of motion at the _ctitious con_guration
subjected to the pseudo!force _eld P	i become

d
dt gV


r¼h dV
 − gV


r¼
u

dV
−gS


h¼i

u
n¼ j dS
 "31#

1s½ ji

1xi

¦r¼b¼i � r¼ f½i "32#

where f½i �"dv½i:dt#[ Using eqns "28#Ð"32#\ the ClausiusÐDuhem inequality for the _ctitious undam!
aged continuum in the isothermal conditions is given by

s½ ijo½¾ij−C	þ"o½ij\ q½r
ij\ gs

ij# − 9 "33#

so that
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0s½ ij−
1C	
1o½ij1 o½¾ij−

1C	
1q½r

ij

q½¾ r
ij−

1C	
1gs

ij

g¾s
ij − 9 "34#

In the _ctitious continuum\ o½ij\ q½r
ij\ and gs

ij are the state variables so that they can be independently
varied[ Although\ q½r

ij may vary when o½ij changes\ their relation is not one!to!one[ Di}erent o½ij

histories may lead to the same q½r
ij\ and a material with di}erent q½r

ij may correspond to the same o½ij

momentarily[ Thus\ it is possible to vary o½ij so that q½r
ij is left unchanged[ Therefore\ inequality "34#

is always satis_ed\ if

s½ ij �
1C	
1o½ij

"35a#

−
1C	
1q½r

ij

q½¾r
ij−

1C	
1gs

ij

g¾s
ij − 9 "35b#

According to "35a#\ the e}ective stress s½ ij is derivable from the _ctitious undamaged free!energy
C	 [ The inequality "35b# gives the thermodynamic constraints on the laws governing the evolution
of the two sets of internal variables\ q½r

ij and gs
ij[

It is now possible to derive the explicit relationship for e}ective strain o½ij[ A relation similar to
eqn "35a# exists for the actual damaged continuum[ When the postulate of free energy equivalence
is assumed\ this relation is

sij �
1C
1oij

�
1C	
1oij

�
1C	
1o½kl

1o½kl

1oij

¦
1C	
1q½r

kl

1q½r
kl

1oij

"36#

where the e}ective internal variable q½r
ij is assumed to be a function of the actual internal variable

qr
ij and damage tensor Dij[ Note that\ for the actual damaged continuum\ independent variables

are oij\ qr
ij and Dij\ so that the second term on the right!hand!side of "36# drops out and the equation

reduces to

sij �
1C	
1o½kl

1o½kl

1oij

� s½ kl

1o½kl

1oij

"37#

Using "20#\ "37# further reduces to

1o½kl

1oij

� Nijkl "38#

where Nijkl is the inverse of Mijkl and is a function of Dij only\ or

MijmnNklij � Imnkl "49#

In "49#\ the fourth!order identity tensor is Iijkl � dikdjl and dij is Kronecker|s delta[ Thus\ it follows
from "38# that the e}ective strain o½ij is linearly related to oij by

o½ij � Nklijokl or oij � Mklijo½kl "40a#

Then\ it is assumed that the following relations are valid for the internal variable qr
ij

q½r
ij � Nklijq

r
kl or qr

ij � Mklijq½
r
kl "40b#
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Constitutive equations at the _ctitious undamaged con_guration must satisfy the inequality
given by eqn "33#[ By use of "40a# this inequality can be written as

sijo¾ij−C	þ "o½ij\ q½r
ij\ gs

ij#¦s½ kl

1o½kl

1Dij

Dþij − 9 "41#

where

1o½ij

1Dmn

�
1Nklij

1Dmn

okl "42#

By observing "30#\ the _rst two terms of "41# are the same as the left!hand!side of "26# in the
isothermal case[ During an incremental loading\ the _ctitious undamaged continuum undergoes a
deformation in the matrix as well as an increase in damage[ The _rst two terms of "41# are energy
dissipated associated with this process[ However\ by de_nition\ the state of the _ctitious material
remains undamaged at the end of each loading increment[ The amount of energy dissipated in
order to restore the _ctitious continuum to the undamaged sate is represented by the last term of
inequality "41#[ For convenience\ inequality "41# can be rewritten as

sijo¾ij−Cþ"o½ij\ q½r
ij\ gs

ij#−GijDþ − 9 "43#

where

Gij � −s½ kl

1o½kl

1Dij

"44#

Tensor Gij is the thermodynamic force associated with unit damage growth Dþij\ and\ in this work
it is referred to as the {damage force| for simplicity[ This quantity may also be considered as the
energy release rate per unit damage advance[ Physically\ the negative of the damage force\ −Gij\
can be interpreted as the {restoring force| which restores the _ctitious continuum to its undamaged
state after experiencing a unit damage growth Dþij[ It is seen from "44# that Gij can be expressed in
terms of s½ ij\ o½ij and Dij[ A further discussion of the damage force can be found in the Appendix[

4[ Plasticity and damage

A discussion is now given to characterize the plastic deformation process\ the damage process\
and the coupling between the two processes[ Starting with the actual damaged con_guration\
where the state variables are oij\ Dij\ qr

ij and gs
ij\ the ClausiusÐDuhem inequality "26# can be rewritten

for isothermal process as

sijo¾ij−
1C
1oij

o¾ij−
1C
1qr

ij

q¾r
ij−

1C
1Dij

Dþij−
1C
1gs

ij

g¾s
ij − 9 "45#

Replacing C by C	 and noting that Dij and gs
ij are independent variables\ eqn "45# becomes
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sijo¾ij−
1C	
1o½ij

1o½ij

1okl

o¾kl−
1C	
1q½r

ij

1q½r
ij

1qr
kl

q¾r
kl−0

1C	
1o½ij

1o½ij

1Dkl

¦
1C	
1q½r

ij

1q½r
ij

1Dkl1Dþkl−
1C	
1gs

ij

g¾s
ij − 9 "46#

or\ after regrouping of terms\ it may be shown that

sijo¾ij−C	þ "o½ij\ q½r
ij\ gs

ij# − 9 "47#

Constraint "47# represents the ClausiusÐDuhem inequality of the actual damaged con_guration[
However\ unlike "26#\ inequality "47# involves the _ctitious free energy C	"o½ij\ q½r

ij\ gs
ij# which is

de_ned in the _ctitious undamaged con_guration\ where the _ctitious material is isotropic[ There!
fore\ C	"o½ij\ q½r

ij\ gs
ij# involves only material constants that are isotropic tensors[

In an attempt to characterize the plastic deformation and the damage process\ one recognizes
that the process does not directly in~uence the mechanisms of plastic deformation^ that is\ there is
no direct coupling between damage and plastic deformation[ In general\ plasticity is directly related
to slips for metals and to other mechanisms for other materials[ In all cases\ damage in~uences
plastic strains only because the net area of resistance decreases as the damage proceeds[ In the
present work\ damage does not directly in~uence plastic deformation of the _ctitious undamaged
continuum\ but it does in~uence the plastic deformation of the actual continuum[

Based on this observation\ the _ctitious free energy C	"o½ij\ q½r
ij\ gs

ij# is assumed to consist of two
parts\ the _ctitious plastic potential C	0"o½ij\ q½r

ij# and the damage potential C	1"Dij\ gs
ij#\ i[e[\

C	"o½ij\ q½r
ij\ gs

ij# 0 C	0"o½ij\ q½r
ij#¦C	1"Dij\ gs

ij# "48#

where potential C	0"o½ij\ qs
ij# characterizes the plastic process of the _ctitious undamaged continuum

while potential C	1"Dij\ gs
ij# describes the damage process[

During deformation\ the microcracks and:or microvoids will extend\ grow and nucleate\ resulting
in progressive material deterioration[ This damage deterioration is not arbitrary and it must obey
thermodynamic constraints to be established[ The damage potential C	1"Dij\ gs

ij# is used to provide
the equation of damage evolution and its necessary constraints[

The state of microdefects is represented by the set of internal variables gs
ij[ The change in

microdefects together with the loading conditions bring about a decrease in load!resisting area\
which is represented at the macroscopic level by damage tensor Dij[ The e}ect is carried over to
the deformation process\ elastic or plastic\ through the e}ective variables\ s½ ij\ o½j and q½r

ij[ Hence\ an
indirect coupling occurs between the plasticity and damage in the actual damaged continuum[
Using "48#\ inequality "47# is written as

sijo¾ij−C	þ0"o½ij\ q½r
ij#−C	þ1"Dij\ gs

ij# − 9 "59#

5[ The constitutive equations and constraints

Within an in_nitesimal strain theory\ the stress rate is usually represented by the material rate[
In CDM\ it is important\ however\ to consider the rotation of the principal directions of damage
during the deformation process[ The principal directions of damage do not generally coincide with
the principal stress\ when nonproportional loading takes place or when the material has su}ered
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a prior damage[ To satisfy the requirements of reference frame indi}erence\ the rate of change of
damage measure Dij and the internal variables gs

ij are expressed by the corotational derivatives

D
9

ij � Dþij−vikDkj¦Dikvkj "50a#

g
9s

ij � g¾s
ij−vikg

s
kj¦gs

ikvkj "50b#

where 9 denotes the corotational di}erentiation and vij represents the spin of the principal damage
coordinate frame with respect to the _xed reference coordinate frame[ Thus\ it follows from "59#
that

0sij−
1C	0

1o½kl

1o½kl

1oij1 o¾ij−
1C	0

1q½r
kl

1q½r
kl

1qr
ij

q¾r
ij−0

1C	0

1o½kl

1o½kl

1Dij

¦
1C	0

1q½r
ij

1q½r
kl

1Dij

¦
1C	1

1Dij1D
9

ij−
1C	1

1gs
ij

g
9s

ij − 9 "51#

Since oij\ Dij\ qr
kl and gs

ij are independent state variables\ _xing these values also _x the values of sij\
C	0\ and C	1 because they are state functions[ For inequality "51# not to be violated for any arbitrary
choice of o¾ij while keeping Dij\ qr

ij\ and gs
ij unchanged\ the following conditions must hold

sij �
1C	0

1o½kl

1o½kl

1oij

"52a#

−
1C	0

1q½r
kl

1q½r
kl

1qr
ij

q¾r
ij−0

1C	0

1o½kl

1o½kl

1Dij

¦
1C	0

1q½r
kl

1q½r
kl

1Dij

¦
1C	1

1Dij1D
9

ij−
1C	þ1

1gs
ij

g
9s

ij − 9 "52b#

Using "38# and noting that Nijkl is the inverse of Mijkl\ "52a# reduces to

s½ ij �
1C	0

1o½ij

"53#

Thus\ the e}ective stress is derivable from potential C	0"o½ij\ q½r
ij#[ Also\ "52b# can be rearranged to

yield

−
1C	0

1q½r
kl

q½
9r

kl¦0Gij−
1C	1

1Dij1D
9

ij−
1C	1

1gs
ij

g
9s

ij − 9 "54#

where

Gij � −
1C	0

1o½kl

1o½kl

1Dij

� −s½ kl

1o½kl

1Dij

"55#

In the derivation\ eqns "53# and "44# were used[ Note that the _rst term of "52b# and the second
term in the bracket of the same inequality are combined to form the _rst term of "54#[

From the assumption that damage does not directly in~uence the state of plasticity of the
_ctitious continuum\ i[e[\ damage a}ects the deformation only through Dij\ the constraint "54# can
be replaced by the following stronger conditions

−
1C	0

1q½r
ij

q½
9r

ij − 9 "56a#
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0Gij−
1C	1

1Dij1D
9

ij−
1C	1

1gs
ij

g
9s

ij − 9 "56b#

The conditions apply\ respectively\ to the _ctitious plastic deformation process and the damage
process[ Furthermore\ if the values of oij\ Dij\ qr

ij\ and gs
ij are _xed\ then the values of Gij and C	1 are

also _xed\ since Gij is a function of state variables as de_ned by eqn "55#\ and C	1 is a state function[
For inequality "56b# not to be violated for an arbitrary choice of D

9
ij\ the following conditions

must hold

Gij �
1C	1

1Dij

"57#

−
1C	1

1gs
ij

g
9s

ij − 9 "58#

For a more detailed investigation of a CDM model\ the damage tensor Dij can be divided into two
parts\ i[e[\

Dij � D r
ij¦Dn

ij "69#

The recoverable part D r
ij is due to area reduction associated with the growth of microdefects

that can be recovered during unloading[ The non!recoverable part Dn
ij involves the reduction of

area due to the extension of existing microcracks and:or the nucleation of microdefects[
In summary\ the constitutive equations for an isothermal damaged continuum are given by the

following sets of equations and constraints

s½ ij �
1C	0

1o½ij

with −
1C	0

1q½r
ij

q½
9r

ij − 9 "60#

Gij �
1C	1

1Dij

with −
1C	1

1gs
ij

g
9s

ij − 9 "61#

and

Gij � −
1C	0

1o½kl

1o½kl

1Dij

"62#

The equation of "60# characterizes the deformation of the _ctitious undamaged continuum\ and
the inequality of "60# constrains the evolution of plastic internal variables[ The set of equation and
constraint "61# provides a relationship between the damage force Gij and the damage measure Dij[
It also provides a constraint on the evolution of damage internal variables[ Finally\ the coupling
between the deformation process and damage process is provided by eqn "62#[ This is further
explained in the subsequent paragraph[

Consider a _ctitious\ undamaged\ element subjected to loading increment dP	i[ During loading\
there are various forms of dissipation of energy associated with plasticity and damage processes[
In particular\ the rate of energy dissipation "caused by the damage force# due to a unit damage
growth D

9
ij with respect to the _ctitious element is "1C	1:1Dij#D

9
ij[ At the end of the loading period\

it is required that the _ctitious element returns to its undamaged state before the next loading can
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be applied[ The restoring energy associated with this transformation is given by −GijD
9

ij\ where
−Gij is the restoring force[ Because the damage needed to be restored at the end of a loading
period is equal to the negative of the damage growth during loading\ the force associated with the
two processes must be equal in magnitude[ Therefore\ eqn "62# can be viewed as a constraint that
must be satis_ed for the _ctitious deformation and damage process to occur simultaneously
within the same continuum[ In fact\ this is a required constraint which arrives naturally from
thermodynamic consideration[

Equations and constraints in "60#Ð"62# provide a framework for theories of CDM[ Explicit
constitutive equations may be obtained if functions for C	0 and C	1 are speci_ed[ Explicit evolution
equations\ which satisfy the inequalities of "60# and "61#\ for internal variables qr

ij and gs
ij should

also be given[ Di}erent theories may be proposed based on this constitutive framework[ One such
theory has been formulated by Wu and Nanakorn "0887# by use of concept of endochronic
plasticity[ In that paper\ the model has been applied to a one!dimensional case which describes
uniaxial monotonic compression and tension of a concrete specimen[ It successfully describes the
strain!softening behavior after the peak load[ In addition\ the model has been applied to the
description of deformation behavior for cyclically loaded concrete and mortar specimens[ Sat!
isfactory results have been obtained[

It is remarked that the internal variables are not observable[ Using the evolution equations for
these variables\ these variables do not necessarily appear in the _nal form of the constitutive
equations[ Depending on the functional forms for C	0 and C	1 and the explicit forms for the
evolution equations for qr

ij\ and gs
ij\ a set of macroscopic parameters may be used for the model[

These parameters may then be determined from experiments[

6[ A brief summary of authors| endochronic CDM

CDM models based on endochronic theory of plasticity have been previously proposed[ The
model of Valanis "0889# is for brittle materials\ while the models of Niu "0878# and Chow and
Chen "0881# are for ductile materials[ The model of Niu "0878# is limited to isotropic damage due
to the scalar representation of damage^ the model of Chow and Chen "0881# is an anisotropic
damage model[ Wu and Nanakorn|s model "0887# is applicable to ductile materials with anisotropic
damage[ The equations of the WuÐNanakorn model are summarized in this section for later
reference[ This model is di}erent than that of Chow and Chen "0881#\ which used neither the
damage internal variables gs

ij nor the concept of damage restoring force Gij[ Instead\ Chow and
Chen "0881# use Dij as an internal variable and express the damage evolution equations in terms
of the potential of damage dissipation and elastic strain energy release rate Yij[

In the WuÐNanakorn model\ the governing equations and constraints are given by "60#Ð"62#[
In this section\ explicit forms of equations are derived by assuming the following quadratic forms
for C	0"o½ij\ q½r

ij# and C	1"Dij\ gs
ij#]

C	0"o½ij\ q½r
ij# �

0
1

s
r

Aijkl"o½ij−q½r
ij#"o½kl−q½r

kl# "63#

C	1"Dij\ gs
ij# �

0
1

s
r

Hijkl"Dij−gs
ij#"Dkl−gs

ij# "64#
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where Aijkl and Hijkl are positive semi!de_nite fourth!order isotropic tensors[ The free energies in
"63# and "64# are de_ned on the _ctitious undamaged material\ which is isotropic[ Represent now
any fourth order isotropic tensor Wijkl by

Wijkl � W0dijdkl¦W1dikdjl\ with W9 � 2 0W0¦
W1

2 1 "65#

where W0 and W1 are constants\ and symmetry of Wijkl with respect to k and l is assumed[ Also\
the variables may be decomposed into the deviatoric and hydrostatic parts as

s½ ij � s½ij¦
0
2
dijs½ kk o½ij � e½ij¦

0
2
dijo½kk q½r

ij � p½r
ij¦

0
2
dijq½

r
kk "66a#

and

Gij � `ij¦
0
2
dijGkk Dij � dij¦

0
2
dijDkk gs

ij � rs
ij¦

0
2
dijg

s
kk "66b#

Using these notations\ the explicit form of constitutive equations for damaged materials may be
derived and are presented in the remaining part of this section[

6[0[ Equations of deformation

The deformation behavior is characterized by the e}ective stressÐe}ective strain relationship
given in "60#[ Using "63#\ this equation reduces to the following two equations by separating
hydrostatic and deviatoric components]

s½ kk � s
r

Ar
9"o½kk−q½r

kk# "67#

s½ij � s
r

Ar
1"e½ij−p½r

ij# "68#

where Ar
9 and Ar

1 are de_ned by "65# with W replaced by A[
Within a linear assumption\ the evolution equations for the hydrostatic and deviatoric parts of

q½r
ij are given in the following form

Lr
9

90
dq½r

kk

dz½H1−s½ kk � 9 and Lr
1

90
dp½r

ij

dz½D1−s½ij � 9 "79#

where 9" # indicates that the di}erentiation operator in brackets is corotational^ Lr
9 and Lr

1 are
constants^ and dz½ de_nes the intrinsic time with respect to the _ctitious deformation[ The intrinsic
time is a monotinically increasing parameter that is used to register the history of deformation in
an endochronic theory[ The intrinsic time is divided into the hydrostatic and deviatoric parts[

An hydrostatic intrinsic time measure zH is de_ned to register the hydrostatic deformation[ It is
scaled by the intrinsic time scale zH so that it can properly describe strain!hardening[ They are
related by
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dzH � bdo½kk−k0

ds½ kk

2K9 b with
dzH

dzH

� h"zH# × 9 "70#

where 9 ¾ k0 ¾ 0 and K9 is the Bulk Modulus[
The deviatoric intrinsic time zD is de_ned based on an e}ective strain!like tensor Q	ij which is

given by

9dQ	ij �
9de½ij−k1

9ds½ij

1m9

"71#

where 9 ¾ k1 ¾ 0 and m9 is the shear modulus[ The operator 9d denotes the corotational increment
and is de_ned on a second!order tensor aij with respect to the intrinsic time z as

9daij �
tdaij−vikakj dz¦aikvkj dz "72#

where td denotes the increment based on material rate and vij is the spin tensor[
The deviatoric intrinsic time is de_ned and scaled as follows]

dz1
D � 9dQ	ij

9dQ	ij with
dzD

dzD

� f"zD# × 9 "73#

In "70# and "73#\ h"zH# and f"zD# are the strain hardening functions corresponding to the hydrostatic
and deviatoric deformation\ respectively[

6[1[ Equations of dama`e

Equations "61# and "64# lead to the following relations for the hydrostatic and deviatoric parts
of damage force Gij\ respectively\

Gkk � s
s

Hs
9"Dkk−gs

kk# "74#

`ij � s
s

Hs
1"dij−rs

ij# "75#

where Hs
9 and Hs

1 are constants[ In the hydrostatic damage\ microdefects expand and:or contract
such that the overall symmetric properties of the material\ i[e[\ all planes of symmetry\ are retained[
In the deviatoric damage\ changes in orientation of microcracks and:or microvoids result in
changes of overall symmetry properties and\ thus\ induce the anisotropic behavior of the material[

Using the inequality of "61#\ the linear evolution equations of gs
ij can be further separated into

hydrostatic and deviatoric parts as

Js
9

90
dgs

kk

dzd
H1−Gkk � 9 and Js

1
90

drs
ij

dzd
D1−`ij � 9 "76#

where Js
9 and Js

1 are constants^ dzd
H and dzd

H are the damage intrinsic time increment corresponding
to the hydrostatic and deviatoric damage\ respectively[ The hydrostatic damage intrinsic time and
its time scale are de_ned\ respectively\ by
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dzd
H � bdDkk−k2

dGkk

2B9 b with
dzd

H

dzd
H

� hd"zd
H# × 9 "77#

where 9 ¾ k2 ¾ 0 and B9 is a material constant[ Similarly\ the deviatoric damage intrinsic time and
its time scale are de_ned by

"dzd
D#1 � 9dRij

9dRij with
dzd

D

dzd
D

� f d"zd
D# × 9 "78a#

where the damage!like tensor 9dRij is de_ned by

9dRij �
9ddij−k3

9d`ij

1M9

"78b#

with 9 ¾ k3 ¾ 0 and M9 is a material constant[ The role played by material constants B9 and M9

in the Gij vs Dij relationship is similar to that played by the bulk modulus K9 and shear modulus
m9 in the stressÐstrain relationship[ The functions hd"zd

H# and f d"zd
D# describe the material damage

resisting "hardening# behavior\ which increases the damage threshold[ These functions are similar
to the hardening functions h"zH# and f"zD# of plastic deformation\ but with a di}erent physical
meaning[

The role played by "77# and "78# in damage is analogous to that played by "70# and "73# in the
stressÐstrain space for the limit case of ki : 0 "i � 0\ 1\ 2\ 3#[ The relations "77a# and "78b# can be
interpreted as the non!recoverable hydrostatic and deviatoric parts of the damage tensor increment
dDij\ respectively[ Note that zd is de_ned in terms of the non!recoverable damage Dn

ij rather than
the e}ective plastic strain o½p

ij\ as in the theories of Niu "0878# and Chow and Chen "0881#[ This
new damage intrinsic time enables the present theory to describe the behavior of damage in brittle
materials\ where damage occurs within the elastic range\ as well as in ductile materials[

6[2[ Couplin` between deformation and dama`e

The coupling between the deformation and damage process is achieved through damage force
Gij given by "62#[ Using the quadratic form of C	0"o½ij\ q½r

ij# given in "63#\ "62# reduces to

Gij � −s
r

Ar
klmn"o½mn−q½r

mn# 90
1o½kl

1Dij1� −s
r

Ar
klmn"o½mn−q½r

mn#opq
90

dNpqkl

dDij 1 "89#

Equation "89# relates the damage force Gij to the e}ective strain o½ij and e}ective internal variables
q½r

ij\ both of which are responsible for the deformation process of the _ctitious continuum[ On the
other hand\ the damage force is related to the damage potential C	1"Dij\ gs

ij# by eqn "61#\ which\ by
use of "64#\ reduces to

Gij �
1C	1

1Dij

� s
r

Hs
ijkl"Dkl−gs

kl# "80#

This equation relates damage force Gij to the damage tensor Dij and internal variables gs
ij[ The

interpretations of "89# and "80# are as follows] consider a _ctitious\ undamaged\ material element
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subjected to a loading increment[ During loading\ di}erent forms of energy associated with
plasticity and damage process are dissipated[ In particular\ the rate of energy dissipation due to
damage growth D

9
ij in the _ctitious element is "1C1:1Dij#D

9
ij[ At the end of the loading period\ it is

required that the _ctitious element returns to its undamaged state before the next loading can be
applied[ The restoring energy associated with this process is −GijD

9
ij\ where −Gij is the restoring

force and the negative of the restoring force\ Gij\ is given by "89#[ Because the damage to be restored
at the end of the loading period is equal to the negative of the damage growth during loading\ the
force associated with the two processes must be equal in magnitude[ Therefore\ "80# with Gij

de_ned by "89#\ can be viewed as a constraint that must be satis_ed for the deformation and
damage processes to occur simultaneously within the _ctitious continuum[ In fact\ this is a required
constraint which arises naturally from the thermodynamic consideration[

7[ Application

In this section\ the model of the previous section is applied to investigate the problem of a
cylindrical concrete specimen subjected to uniaxial compression in the x2!direction[ For such a
problem\ the state of stress and strain is given by

sij � &
9 9 9

9 9 9

9 9 s22
' oij � &

o00 9 9

9 o11 9

9 9 o22
' "81#

where o22 is prescribed for a strain control test[ These are the principal stress and strain components
and the directions of principal damage coincide with those of the principal stress and strain\ if the
specimen is initially isotropic and is subjected to proportional loading[ In this case\ the corotational
rate reduces to the material rate[ The increments of e}ective stress and e}ective strain are

ds½ ij � &
9 9 9

9 9 9

9 9 ds½22
' do½ij � &

do½00 9 9

9 do½11 9

9 9 do½22
' "82#

Their deviatoric parts are

ds½ij �
0
2 &

−ds½22 9

9 −ds½22 9

9 9 1ds½22
' "83a#

de½ij �
0
2 &

1do½00−do½11−do½22 9 9

9 −do½00¦1do½11−do½22 9

9 9 −do½00−do½11¦1do½22
' "83b#

The damage e}ect tensor Mijkl is selected according to Bitten|s de_nition of e}ective stress[ Using
"05# and "14#\ it is expressed in the matrix form as
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ðMŁij �

K

H

H

H

H

H

H

k

0

"0−D0#1
9 9

9
0

"0−D1#1
9

9 9
0

"0−D2#1

L

G

G

G

G

G

G

l

"84a#

The inverse of this matrix is

ðNŁij � &
"0−D0#1 9 9

9 "0−D1#1 9

9 9 "0−D2#1' "84b#

where D0\ D1\ and D2 are the principal damage in the x0!\ x1! and x2!directions\ respectively[
In this example\ for the sake of simplicity\ only one internal variable each for q½ij and gij is used[

The use of only one internal variable was shown in previous applications of endochronic plasticity
to be capable of capturing the main features of stressÐstrain responses in a plastically deformed
continuum[ The hydrostatic behavior of the _ctitious deformation is now considered[ Combining
"67#\ "79a# and "70a#\ the following equation is obtained

ds½ kk

A9

2k0X
ds½ kk

2K9

�"02X# do½kk "85#

where

X �
s½ kk

L9h"zH#
"86#

and A9 and L9 are constants[ The minus "−# and plus "¦# signs\ in "85#\ correspond to tension
and compression\ respectively[ The material constant A9 may be identi_ed with the bulk modulus
2K9 by considering the _ctitious undamaged material as its initial loading state\ where s½ kk � q½kk � 9[
Using the e}ective stress and e}ective strain of "82#\ "85# becomes

ds½22 � 2K9F"k0\ X#"do½00¦do½11¦do½22# "87#

where

F"k0\ X# �
02X

02k0X
and X �

s½22

L9h"zH#
"88#

The deviatoric response of the _ctitious undamaged material\ from "68#\ "79b# and "83#\ is
described by

−ds½22 � A1"1 do½00−do½11−do½22#¦
A1s½22

L1

dzD "099a#
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−ds½22 � A1"−do½00¦1do½11−do½22#¦
A1s½22

L1

dzD "099b#

1ds½22 � A1"−do½00−do½11¦1 do½22#−
A1s½22

L1

dzD "099c#

Equation "87# and the two independent equations of "099# can be put in the matrix form as

&
0 −2K9F"k0\ x# −2K9F"k0\ x#

0 1A1 −A1

0 −A1 1A1
' 8

ds½22

do½00

do½11
9¦8

9

0

09
A1s½22

L1

dzD � 8
2K9F"k0\ x#

A1

A1
9 do½22 "090#

where dzD is related to the deviatoric components of the incremental e}ective strain do½ij and its
relationship is now discussed[ The following expression may be found from "71#

dQ	ij � aij¦bij dzD "091a#

where

aij �"0−k1# de½ij and bij �
k1s½ij

L1

"091b#

By use of "73# and "091a#\ the relation for dzD is obtained as

aijaij¦1aijbij dzD¦"bijbij−f"zD#1# dz1
D � 9 "092#

The equation of hydrostatic damage is found from "74#\ "76a# and "77a# as

dGkk

H9

2k2Y
dGkk

2B9

�"02Y# dDkk "093a#

where

Y �
Gkk

J9h
d"zd

H#
"093b#

and H9\ B9 and J9 are material constants[ Considering the initial loading state\ where Gkk � gkk � 9\
it may be shown that H9 is the initial slope of the Gkk vs Dkk curve and that H9 � 2B9[ The minus
"−# and plus "¦# signs\ in "093a#\ correspond to tension and compression\ respectively[ Equation
"093a# further reduces to

dGkk � H9F"k2\ Y# dDkk "094#

where

F"k2\ Y# �
02Y

02k2Y
"095#

The equation for deviatoric damage response may be obtained from "75# and "76b# as
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d`ij � H1 0ddij¦
`ij

J1

dzd
D1 "096#

where H1 and J1 are constants and H1 may be identi_ed with the initial slope of the deviatoric `ij

vs Dij curve[ Furthermore\ H1 � 1M9[ The damage intrinsic time increment dzd
D is related to the

deviatoric components of the damage force increment d`ij and its relationship is now discussed[
The following expression may be found from "78b# and "096#

dRij � ad
ij¦bd

ij dzd
D "097a#

where

ad
ij �"0−k3#

d`ij

H1

and bd
ij �

`ij

J1

"097b#

By use of "78a# and "097a#\ the relation for dzd
D is obtained as

ad
ija

d
ij¦1ad

ijb
d
ij dzd

D¦"bd
ijb

d
ij−f d"zd

D#1#"dzd
D#1 � 9 "098#

Using "62# and "82#\ the damage force Gij reduces to

Gij � −s½ kl

1o½kl

1Dij

� −s½22

1o½22

1Dij

"009#

Since o½22 �"0−D2#1oee\ o½22 does not depend on D0 and D1[ Consequently\ the only non!zero
component of tensor Gij is

G22 �
1s½22o½22

0−D2

"000a#

and its increment is found to be

dG22 �
1s½22

0−D2

do½22¦
1o½22

0−D2

ds½22¦
1s½22o½22

"0−D2#1
dD2 "000b#

Thus\ the deviatoric part of the increment of the damage force is

d`ij �
0
2&

−dG22 9 9

9 −dG22 9

9 9 1dG22
' "000c#

Furthermore\

ddij �
0
2 &

1dD0−dD1−dD2 9 9

9 −dD0¦1dD1−dD2 9

9 9 −dD0−dD1¦1dD2
' "001#

Equations "000c# and "001# are substituted into "094# and the two independent equations of "096#
to obtain the following matrix equation for the damage process]
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&
H9F"k2\ y# H9F"k2\ y# H9F"k2\ y#

1H1 −H1 −H1

−H1 1H1 −H1
' 8

dD0

dD1

dD2
9� 8

0

−0

−09 dG22−8
9

0

09
H1G22

J1

dzd
D "002#

The equations derived in this section are now applied to the problem of uniaxial compression
of cylindrical concrete specimen "f?c � 62[7 Mpa and E � 16[5 GPa#[ To determine the material
parameters for the model\ the analytical stressÐstrain curves obtained by Fonseka and Krajcinovic
"0870# is used[ In this case\ the directions of the principal damage coincide with those of the
principal stress[ The procedure of calculation is now described[ An increment do½22 is _rst speci_ed[
An initial value for dzD is assumed and equation "090# solved for ds½ 22\ do½00 and do½11[ These values
are then used in "092# to solve for dzD[ An iteration procedure is applied to determine dzD for the
speci_ed do½22[ An initial value for dD2 is then assumed\ which is used in "000b# to determine dG22[
Equation "098# is subsequently used to determine dzd

D[ Thus\ dD0\ dD1\ and dD2 are found from
"002#[ An iteration procedure is also applied on dD2 to determine its value which corresponds to
the speci_ed do½22[ Knowing do½22 and dD2\ do22 can be calculated from the incremental form of

o22 �
o½22

"0−D2#1
"003#

This procedure continues for another speci_ed do½22[
Using a trial!and!error "curve _tting# procedure\ the following material parameters for the

deformation equations have been determined] Poisson|s ratio � 9[1\ e}ective hydrostatic yield
stress L9 � 3[44 Mpa\ e}ective deviatoric yield stress L1 � 07[50 Mpa\ strain hardening parameters
bH � bd � 9\ and k0 � k1 � 9[84[ The material parameters for the damage equations have been
found to be] hydrostatic damage modulus H9 � 9[67 MPa\ deviatoric damage modulus H1 � 0[80
MPa\ hydrostatic damage threshold J9 � 9[50 MPa\ deviatoric damage threshold J1 � 0[82 MPa\
damage resisting "hardening# parameters bd

H � bd
D � 9\ and k2 � k3 � 9[84[

The computed stressÐstrain curves are plotted in Fig[ 2[ There are two curves in this _gure[ One
curve is for the axial strain and the other for the lateral strain[ The volumetric strain vs compressive
stress is plotted in Fig[ 3[ The curve shows a change of sign of the volumetric strain as the axial
strain increases[ The volumetric strain is initially negative and it changes to positive when the axial
strain becomes large in magnitude[ This phenomenon is typical in concrete and rocks\ and it is due
to the increase in the lateral!to!axial strain ratio ð−"o00:o22#Ł as the axial strain increases[ It is seen
in Fig[ 4 that this ratio changes from 9[1 to approximately 9[5 as the axial compressive strain
increases from zero to 9[994[ The results of this model presented in Figs 2 and 3 show good
agreement with the computed value obtained by Fonseka and Krajcinovic "0870#[

8[ Conclusions

The concepts of CDM have been discussed and a constitutive framework of CDM has been
developed based on the internal variables approach[ The framework involves transforming the
actual damaged continuum into an equivalent _ctitious undamaged continuum[ The e}ects of
damage are accounted for by replacing the actual stress sij "gross stress# on the damaged continuum



H[!C[ Wu\ C[K[ Nanakorn : International Journal of Solids and Structures 25 "0888# 4946Ð4976 4972

Fig[ 2[ Stress vs axial and lateral strains in the uniaxial compression of concrete specimen[

Fig[ 3[ Stress vs volumetric strain in the uniaxial compression of concrete specimen[
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Fig[ 4[ Lateral to axial strain ratio vs axial compressive strain[

with the symmetric e}ective stress s½ ij[ A distinction has been made between the state of damage
and the damage measure Dij and the concept of {damage force| has been introduced[

Within the proposed constitutive framework\ the endochronic concept has been used to derive
explicit constitutive equations[ Two intrinsic times are used in the formulation[ The _rst intrinsic
time z is used to describe the plastic deformation history of the _ctitious undamaged continuum
and the second intrinsic time zd is used to depict the damage history[ The model is applicable to
both brittle and ductile materials with damage[

The following conclusions may be drawn from this study]

"0# The damage tensor Dij may be de_ned based on a second!order continuity tensor cij[
"1# The damage e}ect tensor Mijkl de_ned by Betten "0872# gives rise to an e}ective stress which

has a simple physical interpretation\ while other de_nitions of Mijkl do not have the same
signi_cance[

"2# The transformation equation for e}ective strain\ eqn "40a#\ may be derived based on the free
energy equivalence postulate[

"3# In addition to damage tensor Dij\ which is a measurable quantity\ a set of damage internal
variables gs

ij\ which are not measurable\ is used in the formulation[
"4# The constitutive equations for an isothermal damaged continuum include two sets of equations

and constraints[ The _rst set characterizes the deformation of the _ctitious undamaged con!
tinuum and constrains the evolution of plastic internal variables qr

kl[ The second set provides
a relationship between the damage force Gij and the damage measure Dij[ It also provides a
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constraint on the evolution of damage internal variables gs
ij[ In addition\ eqn "62# must be used

to complete the constitutive equations[ This equation is a constraint that must be satis_ed
for the _ctitious deformation and damage process to occur simultaneously within the same
continuum[

"5# The theory does not use the concepts of yield surface or damage surface as its prime requisite
although both surfaces may be de_ned when necessary by setting all ki � 0[ Therefore\ the
constitutive equations of this theory are continuous without discontinuities\ which is advan!
tageous in the numerical calculation[

"6# The proposed model has been shown to describe the three!dimensional state of deformation
of a cylindrical concrete specimen subjected to uniaxial compression[

The focal point of this paper is to formulate a constitutive framework that is self!consistent[
Some well!known concepts have been discussed and it has been pointed out that some concepts
are not compatible with others[ Only concepts that are compatible to each other are used in the
derivation[ New concepts such as the distinction between the state of damage and damage measure
and the concept to restore the _ctitious continuum to its undamaged state after each step of
deformation and damage have been introduced in this paper[ The paper uses the corotational rate
to account for rotation of principal damage directions during deformation[

Appendix

In this study\ the damage force Gij is a thermodynamic force associated with a unit damage
growth D

9
ij[ This de_nition of thermodynamic force\ eqn "44#\ is di}erent than the de_nition that

is often de_ned in CDM[ Commonly\ the thermodynamic force is known as the damage energy
release rate YÝ associated with a unit damage growth D

9
ij and can be de_ned in the principal damage

coordinate frame\ where D
9

ij reduces to Dþij\ as

YijDþij − 9 with Yij � −
1C
1Dij

"A0#

where C is the Helmholtz free energy[ The concept was _rst introduced by Chaboche "0866#\ as
an analogy to the energy release rate associated with crack extension in Fracture Mechanics\ and
it has been adopted by many studies in CDM "Ju\ 0878^ Woo and Li\ 0881^ Chow and Chen\
0881#[ Using the notations of this writing\ the damage energy release rate Yij becomes

Yij � −
1C	"o½ij\ q½r

ij\ gs
ij#

1Dij

� −
1C	0

1o½kl

1o½kl

1Dij

−
1C	0

1q½r
kl

1q½r
kl

1Dij

−
1C	1

1Dij

"A1#

Comparing eqns "55# and "A1#\ it is clear that the damage force Gij is di}erent than the damage
energy release rate Yij as de_ned by eqn "A0#[ However\ if the elastic action is the only consideration\
the damage force Gij can be compared to the elastic strain energy release rate associated with a
unit damage growth de_ned by Chaboche "0866# and given by

Yij � −
1Ce

1Dij

� −
1Ce

1o½e
kl

1o½e
kl

1Dij

"A2#
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where Ce � 0
1
Cijklo½

e
ijo½

e
kl is the _ctitious elastic strain energy\ with o½e

ij representing the e}ective elastic
strain[ In this case\ the Helmholtz free energy C	\ given by eqn "48#\ reduces to

C	"o½e
ij\ gs

ij# � C0"o½e
ij#¦C1"Dij\ gs

ij# "A3#

where the potential C0 is now identical to the elastic strain energy Ce[ Thus\ eqn "55# becomes

Gij � −
1C0

1o½e
kl

1o½e
kl

1Dij

� −
1Ce

1o½e
kl

1o½e
kl

1Dij

"A4#

which is identical to the expression of eqn "A2#[
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